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Abstract. String theory has had a profound impact in the development of mathematics. I indicate
how string theory can be considered as a two-parameter deformation of classical geometry, where
one parameter controls the generalization from points to loops, and the other parameter controls
the quantization in terms of the sum over topologies of Riemann surfaces. The final mathematical
formulation of non-perturbative string theory, which is not yet there, will have to bring together
geometry, non-commutative algebra and loop spaces.

1 Introduction

Over the years string theory [1] has been able to enrich various fields of mathematics. Subjects like
algebraic and differential geometry, topology, representation theory, infinite dimensional analysis
and many others have been stimulated by new concepts such as mirror symmetry [2, 3], quantum
cohomology [4] and conformal field theory [5]. In fact, one can argue that this stimulating influence
in mathematics will be a lasting and rewarding impact of string theory in science, whatever its final
role in fundamental physics. String theory seem to be the most complex and richest mathematical
object that has so far appeared in physics and the inspiring dialogue between mathematics and
physics that it has triggered is blooming and spreading in wider and wider circles of mathematics.

1.1 Physics and mathematics

This synergy between physics and mathematics is definitely not a new phenomenon. Mathematics
has a long history of drawing inspiration from the physical sciences, going back to astrology,
architecture and land measurements in Babylonian and Egyptian times. Certainly this reached
a high point in the 16th and 17th centuries with the development of what we now call classical
mechanics. One of its leading architects, Galileo, has given us the famous image of the “Book of
Nature” in Il Saggiatore, waiting to be decoded by scientists

Philosophy is written in this grand book, the universe, which stands continually open to
our gaze. But the book cannot be understood unless one first learns to comprehend the
language and read the characters in which it is written. It is written in the language
of mathematics, and its characters are triangles, circles, and other geometric figures
without which it is humanly impossible to understand a single word of it; without these
one is wandering in a dark labyrinth.

This deep respect for mathematics didn’t disappear after the 17th century. Again in the be-
ginning of the last century we saw again a wonderful intellectual union of physics and mathematics
when the great theories of general relativity and quantum mechanics were developed. In all the
centers of the mathematical world this was closely watched and mathematicians actively partici-
pated. If anywhere this was so in Gottingen, where Hilbert, Minkowski, Weyl, Von Neumann and
many other mathematicians made important contributions to physics.

Theoretical physics have always been fascinated by the beauty of their equations. Here we
can even quote Feynman, who was certainly not known as a fine connaisseur of higher abstract
mathematics:
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To those who do not know mathematics it is difficult to get across a real feeling as to the
beauty, the deepest beauty, of nature ... If you want to learn about nature, to appreciate
nature, it is necessary to understand the language that she speaks in.

But then Feynman also said “If all mathematics disappeared today, physics would be set back
exactly one week.” (One mathematician’s answer to this remark was: “This was the week God
created the world.”)

But despite the warm feelings of Feynman, the paths of fundamental physics and mathematics
started to diverge dramatically in the 1950s and 1960s. In the struggle with all the new subatomic
particles physicists were close to giving up the hope of a beautiful underlying mathematical struc-
ture. On the other hand mathematicians were very much in an introspective mode these years.
Because the fields were standing back to back, Dyson famously stated in his Gibbs Lecture in 1972:

I am acutely aware of the fact that the marriage between mathematics and physics,
which was so enormously fruitful in past centuries, has recently ended in divorce.

But this was a premature remark, since just at time the Standard Model was being born. This
brought geometry in the form of non-Abelian gauge fields, spinors and topology back to forefront.
Indeed, it is remarkable fact, that all the ingredients of the standard model have a completely
natural mathematical interpretation in terms of connections, vector bundles and Clifford algebras.
Soon mathematicians and physicists started to build this dictionary and through the work of
Atiyah, Singer, 't Hooft, Polyakov and many others a new period of fruitful interactions between
mathematics and physics was born.

1.2 Strings and mathematics

It is fair to say, I believe, that this renewed bond between mathematics and physics has been greatly
further stimulated with the advent of string theory as the dominant driving force in fundamental
particle physics. There is quite a history of developing and applying of new mathematical concepts
in the “old days” of string theory, leading among others to representations of Kac-Moody and
Virasoro algebras, vertex operators and supersymmetry. But since the seminal work of Green and
Schwarz in 1984 on anomaly cancellations — twenty years ago this August — these interactions
truly exploded. In particular with the discovery of Calabi-Yau manifolds as compactifications of the
heterotic strings with promising phenomenological prospectives by the pioneering work of Witten
many techniques of algebraic geometry entered the field.

Most of these developments have been based on the perturbative formulation of string theory,
either in the Lagrangian formalism in terms of maps of Riemann surfaces into manifolds or in terms
of the quantization of loop spaces. This perturbative approach is however only an approximate
description that appears for small values of the quantization parameter.

Recently there has been much progress in understanding a more fundamental description
of string theory that is sometimes described as M-theory. It seems to unify three great ideas of
twentieth century theoretical physics and their related mathematical fields:

e General relativity; the idea that gravity can be described by the Riemannian geometry of
space-time. The corresponding mathematical fields are topology, differential and algebraic
geometry, global analysis.

e Gauge theory; the description of forces between elementary particles using connections on
vector bundles. In mathematics this involves the notions of K-theory and index theorems and
more generally non-commutative algebra.

e Strings, or more generally extended objects (branes) as a natural generalization of point par-
ticles. Mathematically this means that we study spaces primarily through their (quantized)
loop spaces. This relates naturally to infinite-dimensional analysis and representation theory.
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At present it seems that these three independent ideas are closely related, and perhaps essen-
tially equivalent. To some extent physics is trying to build a dictionary between geometry, gauge
theory and strings. From a mathematical perspective it is extremely interesting that such diverse
fields are intimately related. It makes one wonder what the overarching structure will be.

It must be said that in all developments there have been two further ingredients that are
absolutely crucial. The first is quantum mechanics — the description of physical reality in terms of
operator algebras acting on Hilbert spaces. In most attempts to understand string theory quantum
mechanics has been the foundation, and there is little indication that this is going to change.

The second ingredient is supersymmetry — the unification of matter and forces. In mathe-
matical terms supersymmetry is closely related to De Rham complexes and algebraic topology. In
some way much of the miraculous interconnections in string theory only work if supersymmetry is
present. Since we are essentially working with a complex, it should not come to a surprise to math-
ematicians that there are various ‘topological’ indices that are stable under perturbation and can
be computed exactly in an appropriate limit. Indeed it is the existence of these topological quan-
tities, that are not sensitive to the full theory, that make it possible to make precise mathematical
predictions, even though the final theory is far from complete.

1.3 Quantum invariants

Mathematics studies abstract patterns and structures. As such it has a hierarchical view of the
world, where things are first put in broadly defined categories and then are more and more refined
and distinguished. For instance, in topology one studies spaces in a very crude fashion, whereas
in geometry the actual shape of a space matters. Two-dimensional (closed, oriented) surfaces are
topologically completely determined by their genus or number of handles g = 0,1,2,.... So we
have a topological invariant g that associates to each surface a number

g: {Surfaces} — Z>.

In general such invariants are very hard to come by, and quantum physics, in particular
particle and string theory, has proved to be a fruitful source of inspiration for new invariants. This
should perhaps not come as a complete surprise. Roughly one can say that quantum theory takes a
geometric object (manifold, knot, map) and associates to it a number, often a complex number, that
represents the probability amplitude that the rules of quantum mechanics associate to a certain
physical process that is represented by the geometric object. For example, a knot in R® can stand
for the world-line of a particular particle and a manifold for a particular space-time. Once we have
associated concrete numbers to geometric objects one can operate on them with various algebraic
operations. In knot theory one has the concept of relating knots through recursion relations (skein
relations) or even differentiation (Vassiliev invariants). In this very general way quantization can
be thought of as a map

Geometry — Algebra.

that brings geometry into the real of algebra. This often gives powerful new perspectives, as we
will see in a few examples later.

1.4 String theory as a deformation of classical geometry

For pedagogical purposes in this lecture we will consider the réle of string theory in mathematics
as a two parameter family of deformations of “classical” Riemannian geometry. Let us introduce
these two parameters heuristically. (We will give a more precise explanation later.)

First, in perturbative string theory we study the loops in a space-time manifold. These loops
can be thought to have an intrinsic length £;, the string length. Because of the finite extent of a
string, the geometry is necessarily “fuzzy.” At least at an intuitive level it is clear that in the limit
£s — 0 the string degenerates to a point, a constant loop, and the classical geometry is recovered.
The parameter £, controls the “stringyness” of the model. We will see how the quantity ¢2 = o
plays the role of Planck’s constant on the worldsheet of the string. That is, it controls the quantum
correction of the two-dimensional field theory on the world-sheet of the string.
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A second deformation of classical geometry has to do with the fact that strings can split and
join, sweeping out a surface ¥ of general topology in space-time. According to the general rules of
quantum mechanics we have to include a sum over all topologies. Such a sum over topologies can
be regulated if we can introduce a formal parameter gg, the string coupling, such that a surface
of genus h gets weighted by a factor g2~ 2. Higher genus topologies can be interpreted as virtual
processes wherein strings split and join — a typical quantum phenomenon. Therefore the parameter
gs controls the quantum corrections. In fact we can equate g2 with Planck’s constant in space-time.
Only for small values of g, can string theory be described in terms of loop spaces and sums over
surfaces.

In fact, in the case of particles we know that for large values of g, it is better to think in
terms of waves, or more precisely quantum fields. So one could expect that for large g; and o' the
right framework is string field theory [6]. This is partly true, but it is in general difficult to analyze
string field theory directly. In particular the occurrence of branes, higher-dimensional extended
objects that will play an important role in the subsequent, is often obscure.

Summarizing we can distinguish two kinds of deformations: stringy effects parametrized by
o', and quantum effects parametrized by gs. This situation can be described with the following
diagram

o' large | conformal field theory M-theory
strings string fields, branes
o' =0 quantum mechanics | quantum field theory
particles fields
gs =0 gs large

It is perhaps worthwhile to put some related mathematical fields and leading mathematicians
in a similar table

o' large quantum cohomology non-commutative geometry

(Gromov, Witten) (Connes)

a' ~ 0 | combinatorical knot invariants | 4-manifold, 3-manifolds, knots

(Vassiliev, Kontsevich) (Donaldson, Witten, Jones)

gs =0 gs large

2 Quantum mechanics and particles

As a warm-up let us start by briefly reviewing the quantum mechanics of point particles in more
abstract mathematical terms.

In classical mechanics we describe point particles on a Riemannian manifold X that we think
of as a (Euclidean) space-time. Pedantically speaking we look at X through maps

z: pt—>X

of an abstract point into X. Quantum mechanics associates to the classical configuration space X
the Hilbert space H = L?(X) of square-integrable wavefunctions. We want to think of this Hilbert
space as associated to a point

H = Hpt.

For a supersymmetric point particle, we have bosonic coordinates z* and fermionic variables 6#
satisfying
oreY = —6vo".
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We can think of these fermionic variables geometrically as one-forms 8# = dz*. So, the supersym-
metric wavefunction ¥(x, ) can be interpreted as a linear superposition of differential forms on
X
U(z,0) = lelul___undx‘“ Ao Ndxhn.
n

So, in this case the Hilbert space is given by the space of (square-integrable) de Rham differential
forms H = Q*(X).

Classically a particle can go in a time ¢ from point x to point y along some preferred path,
typically a geodesic. Quantum mechanically we instead have a linear evolution operator

P H > H.

that describes the time evolution. Through the Feynman path-integral this operator is associated
to maps of the line interval of length ¢ into X. More precisely, the kernel ®;(x,y) of the operator
®,, that gives the probability amplitude of a particle situated at x to arrive at position y in time
t, is given by the path-integral

t
dy(z,y) = /( )Da: exp [—/0 d7'|a':|2]

over all paths z(7) with (0) = z and z(¢) = y. ®; is a famous mathematical object — the integral

kernel of the heat equation

d
— P, = A® by = —vy).
i t t> 0o=96(z—vy)

These path-integrals have a natural gluing property: if we first evolve over a time ¢; and
then over a time to this should be equivalent to evolving over time t; + t2. That is, we have the
composition property of the corresponding linear maps

Dy, 0 Py, = Piypis- (1)

This allows us to write
(I)t = e_tH

with H the Hamiltonian. In the case of a particle on X the Hamiltonian is of course simply given
by (minus) the Laplacian H = —A. The composition property (1) is a general property of quantum
field theories. It leads us to Segal’s functorial view of quantum field theory, as a functor between
the categories of manifolds (with bordisms) to vector spaces (with linear maps) [8].

In the supersymmetric case the Hamiltonian can be written as

H=-A=—(dd" + d*d)
Here the differentials d, d* play the role of the supercharges

0 0?

=gk g
d=¢'5m =9 Jprdz””

The ground states of the supersymmetric quantum mechanics satisfy H¥ = 0 and are therefore
harmonic forms
dv =0, d*¥ = 0.

Therefore they are in 1-to-1 correspondence with the de Rham cohomology group of the space-time
manifold
¥ € Harm™*(X) = H*(X).

We want to make two additional remarks. First we can consider also a closed 1-manifold,
namely a circle S of length ¢. Since a circle is obtained by identifying two ends of an interval we
can write

Z S1 = TI‘qu)t
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Here the partition function Zg: is a number associated to the circle S* that encodes the spectrum of
the operator A. We can also compute the supersymmetric partition function by using the fermion
number F' (defined as the degree of the corresponding differential form). It computes the Euler
number

Tr(—1)F®; = dim H®*"(X) — dim H°¥(X) = x(X)

Secondly, in this set-up all world-lines of the particles come with a metric, i.e., a total lenth .
To make the step from the quantum mechanics to the propagation of a single particle in quantum
field theory we have to integrate over this metric. In case of an interval we obtain in this way the
usual propagator of a massless particle, the Greens’ function of the Laplacian,

/ dtet® =
0

3 Conformal field theory and strings

1

p2

D> =

We will now introduce our first deformation parameter o' and generalize from point particles and
quantum mechanics to strings and conformal field theory.

3.1 Sigma models

A string can be considered as a parametrized loop. So, in this case we study the manifold X
through maps
z: S5 X

that is, through the free loop space £X.

Quantization will associate a Hilbert space to this loop space. Roughly one can think of
this Hilbert space as L2(£X), but it is better to think of it as a quantization of an infinitesimal
thickening of the locus of constant loops X C L£X. These constant loops are the fixed points
under the obvious S' action on the loop space. The normal bundle to X in £X decomposes into
eigenspaces under this S' action, and this gives a description (valid for large volume of X) of the
Hilbert space Hg: associated to the circle as the normalizable sections of an infinite Fock space
bundle over X.

Hor = L*(X, Fy ® F_)

where the Fock bundle is defined as
F=QRS (TX)=CaqIX -
n>1
Here we use the formal variable ¢ to indicate the Z-grading of F and we use the standard notation
S,V =P ¢ s™V
N>0

for the generating function of symmetric products of a vector space V.

When a string moves in time it sweeps out a surface X. For a free string ¥ has the topology
of S x I, but we can also consider at no extra cost interacting strings that join and split. In that
case ¥ will be a oriented surface of arbitrary topology. So in the Lagrangian formalism one is let
to consider maps

z: ¥ X.

As is explained in the other lectures, there is a natural action for such a sigma model if we pick a
Hodge star or conformal structure on ¥ (together with of course a Riemannian metric g on X)

S(z) = / Guvdzh A xdz”
)

The critical points of S(z) are the harmonic maps.
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In the Lagrangian quantization formalism one considers the formal path-integral over all maps

r:X—>X
<I>2;=/ e 5/
z: X=X

Here the constant o' plays the role of Planck’s constant on the string worldsheet X. Tt can be
absorbed in the volume of the target X by rescaling the metric as ¢ — o' - g. The semi-classical
limit o' — 0 is therefore equivalent to the limit vol(X) — oo.

3.2 Functorial description

In the functorial description of conformal field theory the maps Py, are abstracted away from the
sigma model definition.

Starting point is now an arbitrary (closed, oriented) Riemann surface ¥ with boundary. This
boundary consists of a collections of oriented circles. One declares these circles in-coming or out-
going depending on whether there orientation matches that of the ¥. To a surface ¥ with m
in-coming and n out-going boundaries one associates a linear map

These maps are not independent but satisfy gluing axioms that generalize the simple composition
law (1)
q’gl o} @)32 = q)g

where ¥ is obtained by gluing ¥; and ¥, on their out-going and incoming boundaries respectively.
In this way we obtain what is known as a modular functor. It has a rich algebraic structure.
For instance, the sphere with three holes

gives rise to a product
®: Hg1 ® Hgr — Hsr

Using the fact that a sphere with four holes can be glued together from two copies of the three-holed
sphere one shows that this product is essentially commutative and associative

Once translated in terms of transition amplitudes, these relation lead to non-trivial differential
equations and integrable hierarchies. For more details see e.g. [4, 7].

3.3 Stringy geometry and T-duality

Two-dimensional sigma models give a natural one-parameter deformation of classical geometry.
The deformation parameter is Planck’s constant o'. In the limit o' — 0 we localize on constant
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loops and recover quantum mechanics or point particle theory. For non-zero o the non-constant
loops contribute.

In fact we can picture the moduli space of CFT’s roughly as follows. It will have components
that can be described in terms of a target spaces X. For these models the moduli parametrize
Ricci-flat metrics plus a choice of B-field. These components have a boundary ‘at infinity’ which
describe the large volume manifolds. We can use the parameter o' as local transverse coordinate on
the collar around this boundary. If we move away from this boundary stringy corrections set in. In
the middle of the moduli space exotic phenomena can take place. For example, the automorphism
group of the CFT can jump, which gives rise to orbifold singularities at enhanced symmetry points.

The most striking phenomena that the moduli space can have another boundary that allows
again for a semi-classical interpretation in terms of a second classical geometry X . These points look
like quantum or small volume in terms of the original variables on X but can also be interpreted
as large volume in terms of a set of dual variables on a dual or mirror manifold X. In this case
we speak of a T-duality. In this way two manifold X and X are related since they give rise to the
same CFT.

The most simple example of such a T-duality occurs for toroidal compactification. If X = T is
an torus, the CFT’s on T and its dual 7™ are isomorphic. We will explain this now in more detail.
These kind of T-dualities have led to spectacular mathematical application in mirror symmetry,
as we will review after that.

3.4 Particles and strings on a torus

Let us consider a particle or a string on a space-time that is given by a n-dimensional torus, written
as the quotient
T=R"/L

with L a rank n lattice.
States of a quantum mechanical point particle on T" are conveniently labeled by their momen-
tum

pEL*.
The wavefunctions ¥(x) = e?® form a basis of H = L?(T) that diagonalizes the Hamiltonian
H = —A = p?. So we can decompose the Hilbert space as
He @
pEL*

where the graded pieces H, are all one-dimensional. There is a natural action of the symmetry
group
G =SL(n,Z) = Aut L

on the lattice I' = L and the Hilbert space H. (These transformations will in general not leave the
metric invariant, but instead give by pull-back another flat metric on T'.)

In the case of a string moving on the torus 7" states are labeled by a second quantum number:
their winding number

w € L

which is simply the class in 71T of the corresponding classical configuration. The winding number
simply distinguishes the various connected components of the loop space LT, since

o LT = mT = L.

We therefore see a natural occurrence of the so-called Narain lattice which is the set of momenta
p € L* and winding numbers w € L
Fn,n — L @ L*

This is an even self-dual lattice of signature (n,n) with inner product

pz(wak)7 q2=2wk
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It turns out that all the symmetries of the lattice I'™™ lift to symmetries of the full conformal field
theory built up by quantizing the loop space. The elements of the symmetry group of the Narain
lattice

SO(n,n,Z) = AutI'™"

are examples of T-dualities. A particular example is the interchange of the torus with its dual
T & T~

T-dualities that interchange a torus with its dual can be also applied fiberwise. If the manifold

X allows for a fibration X — B whose fibers are tori, then we can produce a dual fibration where

we dualize all the fibers. This gives a new manifold X — B. Under suitable circumstances this

produces an equivalent supersymmetric sigma model. The symmetry that interchanges these two
manifolds R
X & X

is called mirror symmetry [2, 3].

3.5 Topological strings, quantum cohomology, and mirror symmetry

In the case of point particles it was instructive to consider the supersymmetric extension since we
naturally produced differential form on the target space. These differential forms are able, through
the De Rahm complex, to capture the topology of the manifold. In fact, reducing the theory to
the ground states, we obtained exactly the harmonic forms that are unique representatives of the
cohomology groups. In this way we made the step from functional analysis and operator theory to
topology.

In a similar fashion there is a formulation of string theory that is able to capture the topology
of string configurations. This is called topological string theory. This is quite a technical subject,
that is impossible to do justice to within the confines of this lecture, but I will sketch the essential
features. For more details see e.g. [3]. (A crucial property of topological string theory, that again
we cannot really explain here, is that besides being a beautiful and rich mathematical structure, it
is also able to compute some very specific “topological” amplitudes in the full-fledged superstring
and therefore also captures physical information.)

Roughly, the idea is the following. First, jus as in the point particle case, one introduces
fermion fields 6*. Now these are considered as spinors on the two-dimensional world-sheet and

they have two components 07, 0%. The local action for these fermions is

Do¥ Doy,
2 14 L 19 R
/d Z 9u () (HL 7% + 0% P )

One furthermore assumes that the target space X is (almost) complex so that one can use holomor-
phic local coordinates z?, T’ with a similar decomposition for the fermions. When complemented
with the appropriate higher order terms this gives a sigma model that has ' = (2, 2) supersym-
metry.

One now changes the spins of the fermionic fields to produce the topological string. This can
be done in two inequivalent ways called the A-model and the B-model. Depending on the nature
of this topological twisting the path-integral of the sigma model localizes to a finite-dimensional
space.

The A-model restricts to holomorphic maps

9z
T =0
0z

This reduces the full path-integral over all maps from ¥ into X to a finite-dimensional integral over

the moduli space M of holomorphic maps. More precisely, it is the moduli space of pairs (X, f)

where Y. is a Riemann surface and f is a holomorphic map f: ¥ — X. The A-model only depends
on the Kihler class

[w] € H*(X)
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of the manifold X.

A-model topological strings give an important example of a typical stringy generalization
of a classical geometric structure. Quantum cohomology [4] is a deformation of the De Rahm
cohomology ring H*(X) of a manifold. Classically this ring captures the intersection properties of
submanifolds. More precisely, if we have three cohomology classes

a,B,v € H*(X)
that are Poincaré dual to three subvarieties A, B,C C X, the quantity

I(a,5,7)=/Xa/\ﬂ/\7

computes the intersection of the three classes A, B, and C. That is, it counts (with signs) the
number of points in ANBNC.

In the case of the A-model we have to assume that X is a Kéahler manifold or at least a
symplectic manifold with symplectic form w. Now the “stringy” intersection product is related to
the three-string vertex

Mathematically it defined as

Iqu(a,ﬁ,v)=2qd/ ahBAy
d Mapsg

where we integrate our differential forms now over the moduli space of pseudo-holomorphic maps
of degree d of a sphere into the manifold X. These maps are weighted by the classical instanton

action
q* = exp [_il/ w] = =@/
(0% S2

Clearly in the limit o' — 0 only the maps of degree zero contribute, but these maps are necessarily
constant and so we recover the classical definition of the intersection product by means of an
integral over the space X. Geometrically, we can think of the quantum intersection product as
follows: it counts the pseudo-holomorphic spheres inside X that intersect each of the three cycles
A, B and C. So, in the quantum case these cycles do no longer need to actually intersect. It is
enough if there is a pseudo-holomorphic sphere with points a,b,c such that a € A, b € B and
¢ € C. That is, if there is a string world-sheet that connect the three.

In the B-model one can reduce to (almost) constant maps. This model only depends on the
complex structure moduli of X . It most important feature is that mirror symmetry will interchange
the A-model with the B-model. A famous example of the power of mirror symmetry is the original
computation of Candelas et. al. [9] of the quintic Calabi-Yau manifold given by the equation

X:oai 425 +ad+2+28 =0
in P*. In the case the A-model computation leads to an expression of the form

F(g) =) nag*
d

where ng computes the number of rational curves in X of degree d. These numbers are notoriously
difficult to compute. The number n; = 2875 of lines is a classical result from the 19** century. The
next one ny = 609250 counts the different conics in the quintic and was only computed around 1980.
Finally the number of twisted cubics ng = 317206375 was the result of a complicated computer
program. However, now we know all these numbers and many more thanks to string theory. Here
are the first ten
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ng
2875

6 09250

3172 06375

24 24675 30000

22930 59999 87625

248 24974 21180 22000

2 95091 05057 08456 59250

3756 32160 93747 66035 50000

50 38405 10416 98524 36451 06250
70428 81649 78454 68611 34882 49750

© 0o N O Ut kW N =

—
[en}

How are physicists able to compute these numbers? Mirror symmetry does the job. It relates
the “stringy” invariants coming from the A-model on the manifold X to the classical invariants of
the B-model on the mirror manifold X. In particular this leads to a so-called Fuchsian differential
equation for the function F'(g). Solving this equation one reads off the integers ng.

4 Non-perturbative string theory and branes

We have seen how CFT gives rise to a rich structure in terms of the modular geometry as formulated
in terms of the maps ®x. To go from CFT to string theory we have to make two more steps.

4.1 Summing over string topologies

First, we want to generalize to the situation where the maps ®x are not just functions on the moduli
space My, of Riemann surfaces but more general differential forms. In fact, we are particular
interested in the case where they are volume forms since then we can define the so-called string

amplitudes as
4, = / o5
M

g
This is also the general definition of Gromov-Witten invariants [4] as we will come to later. Although
we suppress the dependence on the CFT moduli, we should realize that the amplitudes A, (now
associated to a topological surface of genus g) still have (among others) o' dependence.
Secondly, it is not enough to consider a string amplitude of a given topology. Just as in
field theory one sums over all possible Feynman graphs, in string theory we have to sum over all
topologies of the string world-sheet. In fact, we have to ensemble these amplitudes into a generating

function.
Algs) = ) 95> 7% A,
9>0

Here we introduce the so-called string coupling constant gs. Unfortunately, in general this gener-
ating function can be at best an asymptotic series expansion of an analytical function A(gs). A
rough estimate of the volume of M, shows that typically

Ay ~ 2g!

so the sum over string topologies will not converge. Indeed, general physics arguments tell us that
the non-perturbative amplitudes A(gs) have corrections of the form

Ags) =) 979 Ay + O(e /o)

920
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Clearly to approach the proper definition of the string amplitudes these non-perturbative correc-
tions have to be understood.

4.2 Non-perturbative string theory

As will be reviewed at much greater length in the other lectures, the last years have seen remarkable
progress in the direction of developing such a non-perturbative formulation. Remarkable, it has
brought very different kind of mathematics into the game. It involves two remarkable new ideas.
1. String theory is not a theory of strings. It is simply not enough to consider loop spaces and
their quantization. We should also include other extended objects, collectively known as branes.
One can try to think of these objects as associated to more general maps ¥ — X where Y is a
higher-dimensional space. But the problem is that there is not a consistent quantization starting
from ‘small’ branes along the lines of string theory, that is, an expansion where we control the size
of Y (through ') and the topology (through g5). However, through the formalism of D-branes [10]
these can be analyzed exactly in string perturbation theory. D-branes give contribution that are

of order
e~ 1/9s

and therefore complement the asymptotic string perturbation series.

2. As we stressed, the amplitudes A depend on many parameters or moduli. Apart from the
string coupling g, all other moduli have a geometric interpretation, in terms of the metric and B-
field on X. The second new ingredient is the insight that string theory on X with string coupling g,
can be given a fully geometric realization in terms of a new theory called M-theory on the manifold
X x S, where the length of the circle S is g5 [11].

4.3 Branes on a torus

If we move to the full non-perturbative string theory on a torus the story becomes more complicated
then we saw in section 3.4. The lattice of quantum numbers of the various objects becomes larger
and so do the symmetries. For small values of the dimension n of the torus T (n > 4) it turns
out that the non-perturbative charge lattice M can be written as as the direct sum of the Narain
lattice (the momenta and winding numbers of the strings) together with a lattice that keeps track
of the homology classes of the branes

M=T""g Heven/odd(T)

Here we note that the lattice of branes (which are even or odd depending on the type of string
theory that we consider)

Heven/odd(T) o /\even/oddL,,=

transform as half-spinor representations under the T-duality group SO(n,n,Z). The full duality
group turns out to be the exceptional group over the integers

Epi1(Z).

The lattice M will form an irreducible representation for this symmetry group. These so-called
U-dualities will therefore permute strings with branes.
So we see that our hierarchy

{Particles} C {Strings} C {Branes}
is reflected in the corresponding sequence of symmetry (sub)groups
SL(n,Z) C SO(n,n,Z) C Epy1(Z)

of rank n — 1, n and n + 1 respectively. It is already a very deep (and generally unanswered)
question what the ‘right’ mathematical structure is associated to a n-torus that gives rise to the
exceptional group E,1(Z).



Vol. 1, 2004 The Mathematics of String Theory 57

5 D-branes

The crucial ingredient to extend string theory beyond perturbation theory are D-branes [10]. From
a mathematical point of view D-branes can be considered as a relative version of Gromov-Witten
theory. The starting point is now a pair of relative manifolds (X,Y) with X a d-dimensional
manifold and Y C X closed. The string worldsheets are defined to be Riemann surfaces ¥ with
boundary 9%, and the class of maps z : ¥ — X should satisfy

z(0¥) CY

That is, the boundary of the Riemann surfaces should be mapped to the subspace Y.

Note that in a functorial description there are now two kinds of boundaries to the surface.
First there are the time-like boundaries that we just described. Here we choose a definite boundary
condition, namely that the string lies on the D-brane Y. Second there are the space-like boundaries
that we considered before. These are an essential ingredient in any Hamiltonian description. On
these boundaries we choose initial value conditions that than propagate in time. In closed string
theory these boundaries are closed and therefore a sums of circles. With D-branes there is a second
kind of boundary: the open string with interval I = [0, 1].

The occurrence of two kinds of space-like boundaries can be understood because there are
various ways to choose a ‘time’ coordinate on a Riemann surface with boundary. Locally such a
surface always looks like S x R or I x R. This ambiguity how to slice up the surface is a powerful
new ingredient in open string theory.

To the CFT described by the pair (X,Y) we will associate an extended modular category. It
has two kinds of objects or 1-manifolds: the circle S (the closed string) and the interval I = [0, 1]
(the open string). The morphisms between two 1-manifolds are again bordisms or Riemann surfaces
3 now with a possible boundaries. We now have to kinds of Hilbert spaces: closed strings Hg: and
open strings Hj.

Semi-classically, the open string Hilbert space is given by

Hr = L*(Y, F)
with Fock space bundle
F =) S (TX)
n>1

Note that we have only a single copy of the Fock space F, the boundary conditions at the end of
the interval relate the left-movers and the right-movers. Also the fields are sections of the Fock
space bundle over the D-brane Y, not over the full space-time manifold X. In this sense the open
string states are localized on the D-brane.

5.1 Branes and matrices

One of the most remarkable facts is that D-branes can be given a multiplicity N which naturally
leads to a non-Abelian structure [12].

Given a modular category as described above there is a simple way in which this can be
tensored over the N x N hermitian matrices. We simply replace the Hilbert space H; associated
to the interval I by

Hr @ Matnxn

with the hermiticity condition
(@ Mpy)" =" @ Mys

The maps Py are generalized as follows. Consider for simplicity first a surface ¥ with a single
boundary C'. Let C' contain n ‘incoming’ open string Hilbert spaces with states ¥ @ My,...,¢, ®
M,,. These states are now matrix valued. Then the new morphism is defined as

Oy (Y1 @ My,..., 00 @ My) = ®x(¢1,...,0n)Tr (My -+ - My,).
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In case of more than one boundary component, we simply have an additional trace for every
component.
In particular we can consider the disk diagram with three open string insertions. By consid-
ering this as a map
Py HiQHr — Hr

we see that this open string interaction vertex is now given by
Dy (1)1 @ My,1ps @ Ma) = (1 * 1p2) @ (M1 My).

So we have tensored the associate string product with matrix multiplication.

If we consider the geometric limit where the CFT is thought of as the semi-classical sigma
model on X, the string fields that correspond to the states in the open string Hilbert space H will
become matrix valued fields on the D-brane Y, i.e. they can be considered as sections of End(E)
with E a (trivial) vector bundle over Y.

This matrix structure naturally appears if we consider N different D-branes Y3,...,Yy. In
that case we have a matrix of open strings that stretch from brane Y; to Y;. In this case there
is no obvious vector bundle description. But if all the D-branes coincide Y1 = ... = Yn a U(N)
Symmetry appears.

5.2 D-branes and K-theory

The relation with vector bundles has proven to be extremely powerful. The next step is to consider
D-branes with non-trivial vector bundles. It turns out that these configurations can be considered
as a composite of branes of various dimensions [13]. There is a precise formula that relates the
topology of the vector bundle E to the brane charge u(E) that can be considered as a class in
H*(X). (For convenience we consider first maximal branes Y = X.) It reads [14]

w(E) = ch(E)A'? € H*(X). (2)

Here ch(E) is the (generalized) Chern character ch(E) = Tr exp(F/2mi) and A is the genus that
appears in the Atiyah-Singer index theorem. Note that the D-bane charge can be fractional.

Branes of lower dimension can be described by starting with two branes of top dimension, with
vector bundles F; and FE», of opposite charge. Physically two such branes will annihilate leaving
behind a lower-dimensional collection of branes. Mathematically the resulting object should be
considered as a virtual bundle E; © E, that represents a class in the K-theory group K° (X)of X
[15]. In fact the map p in (2) is a well-known correspondence

p: K°(X) —» H"(X)

which is an isomorphism when tensored with the reals. In this sense there is a one-to-one map
between D-branes and K-theory classes [15]. This relation with K-theory has proven to be very
useful.

5.3 Example: the index theorem

A good example of the power of translating between open and closed strings is the natural emer-
gence of the index theorem. Consider the cylinder ¥ = S* x I between two D-branes described by
(virtual) vector bundles E; and E,. This can be seen as closed string diagram with in-state |Ej)
and out-state |Ez)

Oy, = (E», E1)

Translating the D-brane boundary state into closed string ground states (given by cohomology
classes) we have
|E) = n(E) € H*(X)
so that
By = / ch(EBy)ch(E:)A
b'e
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On the other hand we can see the cylinder also as a trace over the open string states, with
boundary conditions labeled by E; and FE,. The ground states in Hj are sections of the Dirac
spinor bundle twisted by E; ® E5 This gives

QE = TI‘HI(—l)F = index(DElg,E;)

So the index theorem follows rather elementary.
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