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1 Historical Aspects

The birthday of the quantum Hall effect (QHE) can be fixed very accurately. It was the night of
the 4th to the 5th of February 1980 at around 2 a.m. during an experiment at the High Magnetic
Field Laboratory in Grenoble. The research topic included the characterization of the electronic
transport of silicon field effect transistors. How can one improve the mobility of these devices?
Which scattering processes (surface roughness, interface charges, impurities etc.) dominate the
motion of the electrons in the very thin layer of only a few nanometers at the interface between
silicon and silicon dioxide? For this research, Dr. Dorda (Siemens AG) and Dr. Pepper (Plessey
Company) provided specially designed devices (Hall devices) as shown in Fig.1, which allow direct
measurements of the resistivity tensor.

Figure 1: Typical silicon MOSFET device used for measurements of the xx- and xy-components of
the resistivity tensor. For a fixed source-drain current between the contacts S and D, the potential
drops between the probes P − P and H − H are directly proportional to the resistivities ρxx and
ρxy. A positive gate voltage increases the carrier density below the gate.

For the experiments, low temperatures (typically 4.2 K) were used in order to suppress dis-
turbing scattering processes originating from electron-phonon interactions. The application of a
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strong magnetic field was an established method to get more information about microscopic de-
tails of the semiconductor. A review article published in 1982 by T. Ando, A. Fowler, and F. Stern
about the electronic properties of two-dimensional systems summarizes nicely the knowledge in
this field at the time of the discovery of the QHE [1].

Figure 2: Hall resistance and longitudinal resistance (at zero magnetic field and at B = 19.8 Tesla)
of a silicon MOSFET at liquid helium temperature as a function of the gate voltage. The quantized
Hall plateau for filling factor 4 is enlarged.

Since 1966 it was known, that electrons, accumulated at the surface of a silicon single crystal by
a positive voltage at the gate (= metal plate parallel to the surface), form a two-dimensional electron
gas [2]. The energy of the electrons for a motion perpendicular to the surface is quantized (“particle
in a box”) and even the free motion of the electrons in the plane of the two-dimensional system
becomes quantized (Landau quantization), if a strong magnetic field is applied perpendicular to
the plane. In the ideal case, the energy spectrum of a 2DEG in strong magnetic fields consists
of discrete energy levels (normally broadened due to impurities) with energy gaps between these
levels. The quantum Hall effect is observed, if the Fermi energy is located in the gap of the electronic
spectrum and if the temperature is so low, that excitations across the gap are not possible.

The experimental curve, which led to the discovery of the QHE, is shown in Fig. 2. The
blue curve is the electrical resistance of the silicon field effect transistor as a function of the
gate voltage. Since the electron concentration increases linearly with increasing gate voltage, the
electrical resistance becomes monotonically smaller. Also the Hall voltage (if a constant magnetic
field of e.g. 19.8 Tesla is applied) decreases with increasing gate voltage, since the Hall voltage
is basically inversely proportional to the electron concentration. The black curve shows the Hall
resistance, which is the ratio of the Hall voltage divided by the current through the sample. Nice
plateaus in the Hall resistance (identical with the transverse resistivity ρxy) are observed at gate
voltages, where the electrical resistance (which is proportional to the longitudinal resistivity ρxx)
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Figure 3: Copy of the original notes, which led to the discovery of the quantum Hall effect. The
calculations for the Hall voltage UH for one fully occupied Landau level show, that the Hall
resistance UH/I depends exclusively on the fundamental constant h/e2.

becomes zero. These zeros are expected for a vanishing density of state of (mobile) electrons at the
Fermi energy. The finite gate voltage regions where the resistivities ρxx and ρxy remain unchanged
indicate, that the gate voltage induced electrons in these regions do not contribute to the electronic
transport- they are localized. The role of localized electrons in Hall effect measurements was not
clear. The majority of experimentalists believed, that the Hall effect measures only delocalized

electrons. This assumption was partly supported by theory [3] and formed the basis of the analysis
of QHE data published already in 1977 [4]. These experimental data, available to the public 3 years
before the discovery of the quantum Hall effect, contain already all information of this new quantum
effect so that everyone had the chance to make a discovery that led to the Nobel Prize in Physics
1985. The unexpected finding in the night of 4./5.2.1980 was the fact, that the plateau values in
the Hall resistance ρxy are not influenced by the amount of localized electrons and can be expressed
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with high precision by the equation ρxy = h/ie2 (h=Planck constant, e=elementary charge and i
the number of fully occupied Landau levels). Also it became clear, that the component ρxy of the
resistivity tensor can be measured directly with a volt- and amperemeter (a fact overlooked by
many theoreticians) and that for the plateau values no information about the carrier density, the
magnetic field, and the geometry of the device is necessary.

Figure 4: Experimental uncertainties for the realization of the resistance 1 Ohm in SI units and
the determination of the fine structure constant α as a function of time.

The most important equation in connection with the quantized Hall resistance, the equation
UH = h/e2

·I, is written down for the first time in my notebook with the date 4.2.1980. A copy of this
page is reproduced in Fig. 3. The validity and the experimental confirmation of this fundamental
equation was so high that for the experimental determination of the voltage (measured with a x−y
recorder) the finite input resistance of 1 MΩ for the x−y recorder had to be included as a correction.
The calculations in the lower part of Fig. 3 show, that instead of the theoretical value of 25813
Ohm for the fundamental constant h/e2 a value of about 25163 Ohm should be measured with the
x−y recorder, which was confirmed with high precision. These first measurements of the quantized
Hall resistance showed already, that localized electrons are unimportant and the simple derivation
on the basis of an ideal electron system leads to the correct result. It was immediately clear, that
an electrical resistance which is independent of the geometry of the sample and insensitive to
microscopic details of the material will be important for metrology institutes like NBS in the US
(today NIST) or PTB in Germany. So it is not surprising, that discussions with Prof. Kose at
the PTB about this new quantum phenomenon started already one day after the discovery of the
quantized Hall resistance (see notes in Fig. 3).

The experimental results were submitted to Phys. Rev. Letters with the title: “Realization of
a Resistance Standard based on Fundamental Constants” but the referee pointed out, that (at this
time) not a more accurate electrical resistor was needed but a better value for the fundamental
constant h/e2. Interestingly, the constant h/e2 is identical with the inverse fine-structure constant
α−1 = (h/e2)(2/µ0c) = 137.036 · · · where the magnetic constant µ0 = 4π10−7N/A2 and the
velocity of light c = 299 792 458 m/s are fixed numbers with no uncertainties. The data in Fig.
4 show indeed, that the uncertainty in the realization of the electrical unit of 1Ω within the
International System of Units (SI units) was smaller (until 1985) than the uncertainty for h/e2



Vol. 2, 2004 25 Years of Quantum Hall Effect (QHE) 5

Figure 5: The number of publications related to the quantum Hall effect increased continuously up
to a value of about one publication per day since 1995.

or the inverse fine-structure constant. As a consequence, the title of the first publication about
the quantum Hall effect was changed to: “New Method for High-Accuracy Determination of the
Fine-Structure Constant Based on Quantized Hall Resistance”[5]. The number of publications with
this new topic “quantum Hall effect” in the title or abstract increased drastically in the following
years with about one publication per day for the last 10 years as shown in Fig. 5. The publicity of
the quantized Hall effect originates from the fact, that not only solid state physics but nearly all
other fields in physics have connections to the QHE as exemplarily demonstrated by the following
title of publications:

BTZ black hole and quantum Hall effects in the bulk/boundary dynamics [6].
Quantum Hall quarks or short distance physics of quantized Hall fluids [7].
A four-dimensional generalization of the quantum Hall effect [8].
Quantum computation in quantum-Hall systems [9].
Higher-dimensional quantum Hall effect in string theory [10].
Is the quantum Hall effect influenced by the gravitational field? [11].

Up to now, more than 10 books were published about the quantum Hall effect [12-19] and
the most interesting aspects are summarized in the Proceedings of the International Symposium
“Quantum Hall Effect: Past, Present and Future” [20].

2 Quantum Hall Effect and Metrology

The most important aspect of the quantum Hall effect for applications is the fact that the quan-
tized Hall resistance has always a fundamental value of h/e2 = 25812.807 · · · Ohm. This value
is independent of the material, geometry and microscopic details of the semiconductor. After the
discovery of this macroscopic quantum effect many metrological institutes repeated the experiment
with much higher accuracy than available in a research laboratory and they confirmed, that this
effect is extremely stable and reproducible. Fig. 6 summarizes the data (published until 1988) for
the fundamental value of the quantized Hall resistance and it is evident that the uncertainty in the
measurements is dominated by the uncertainty in the realization of the SI Ohm. From the interna-
tionally accepted definitions for the basic SI units “second”, “meter”, “kilogram”, and “Ampere” it
is clear, that all mechanical and electrical quantities are well defined. However the overview in Fig.
7 shows also, that the base unit Ampere has a relatively large uncertainty of about 10−6 if deduced
from the force between current carrying wires. Apparently, the derived unit 1Ω = 1s−3m2kgA−2

(which depends in principle on all basic units) should have an even larger uncertainty than 10−6.
However, as shown in Fig. 4, the SI Ohm is known with a smaller uncertainty than the basic unit
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Figure 6: Summary of high precision data for the quantized Hall resistance up to 1988 which
led to the fixed value of 25 812.807 Ohm recommended as a reference standard for all resistance
calibrations after 1.1.1990 .

Figure 7: Basic and derived SI units for mechanical and electrical quantities.

Ampere which originates from the fact, that a resistance can be realized via the a.c. resistance
R = 1/ωC of a capacitor C. Since the capacitance C of a capacitor depends exclusively on the
geometry (with vacuum as a dielectric media), one can realize a SI Ohm just by using the basic
units time (for the frequency ω/2π) and length (for a calculable Thomson-Lampert capacitor [21]),
which are known with very small uncertainties. Therefore an uncertainty of about 10−7 for the
realization of the SI Ohm is possible so that the fine-structure constant can be measured via the
QHE directly with the corresponding accuracy. However, the quantized Hall resistance is more sta-
ble and more reproducible than any resistor calibrated in SI units so that the Comité Consultatif
d’Electricité recommended, “that exactly 25 812.807 Ohm should be adopted as a conventional
value, denoted by RK−90, for the von Klitzing constant RK” and that this value should be used
starting on 1.1.1990 to form laboratory reference standards of resistances all over the world [22].
Direct comparisons between these reference standards at different national laboratories (see Fig. 8)
have shown, that deviations smaller than 2 · 10−9 for the reference standards in different countries
are found [23] if the published guidelines for reliable measurements of the quantized Hall resistance
are obeyed [24]. Unfortunately, this high reproducibility and stability of the quantized Hall resis-
tance cannot be used to determine the fine-structure constant directly with high accuracy since
the value of the quantized Hall resistance in SI units is not known. Only the combination with
other experiments like high precision measurements (and calculations) of the anomalous magnetic
moment of the electron, gyromagnetic ratio of protons or mass of neutrons lead to a least square
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adjustment of the value of the fine-structure constant with an uncertainty of only 3.3 · 10−9 result-
ing in a value for the von Klitzing constant of RK = 25812.807449 ± 0.000086 Ohm (CODATA
2002 [25]). Accurate values for fundamental constants (especially for the fine-structure constant)
are important in connection with the speculation that some fundamental constants may vary with
time. Publications about the evidence of cosmological evolution of the fine-structure constant are
questioned and could not be confirmed. The variation ∂α/∂t per year is smaller than 10−16.

Figure 8: Reproducibility and stability of the quantized Hall resistance deduced from comparisons
between different metrological institutes. The observed uncertainties of about 2.10−9 is two orders
of magnitude smaller than the uncertainty in the realization of a resistance calibrated in SI Ohms.

Figure 9: Realization of a two-dimensional electrons gas close to the interface between AlGaAs and
GaAs.

Figure 10: Hall resistance and longitudinal resistivity data as a function of the magnetic field for
a GaAs/AlGaAs heterostructures at 1.5 K .
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The combination of the quantum Hall effect with the Josephson effect (which allows an
representation of the electrical voltage in units of h/e) leads to the possibility, to compare electrical
power (which depends on the Planck constant h) with mechanical power (which depends on the
mass m). The best value for the Planck constant is obtained using such a Watt balance [26].
Alternatively, one may fix the Planck constant (like the fixed value for the velocity of light for the
definition of the unit of length) in order to have a new realization of the unit of mass.

3 Physics of Quantum Hall Effect

The textbook explanation of the QHE is based on the classical Hall effect discovered 125 years ago
[27]. A magnetic field perpendicular to the current I in a metallic sample generates a Hall voltage
UH perpendicular to both, the magnetic field and the current direction:

UH = (B · I)/(n · e · d)

with the three-dimensional carrier density n and the thickness d of the sample. For a two-dimensional
electron gas the product of n · d can be combined as a two-dimensional carrier density ns. This
leads to a Hall resistance

RH = UH/I = B/(ns · e)

Such a two-dimensional electron gas can be formed at the semiconductor/insulator interface, for
example at the Si − SiO2 interface of a MOSFET (Metal Oxid Semiconductor Field Effect
Transistor) or at the interface of a GaAs − AlGaAs HEMT (High Electron Mobility Transistor)
as shown in Fig. 9. In these systems the electrons are confined within a very thin layer of few
nanometers so that similar to the problem of “particle in a box” only quantized energies Ei(i =
1, 2, 3 · · ·) for the electron motion perpendicular to the interface exist (electric subbands).

A strong magnetic field perpendicular to the two-dimensional layer leads to Landau quanti-
zation and therefore to a discrete energy spectrum:

E0,N = E0 + (N + 1/2)h̄ωc (N = 0, 1, 2, ...)

The cyclotron energy h̄ωc = h̄eB/mc is proportional to the magnetic field B and inversely pro-
portional to the cyclotron mass mc and equal to 1.16 meV at 10 Tesla for a free electron mass
m0.

Due to the electron spin an additional Zeeman splitting of each Landau level appears which
is not explicitly included in the following discussion. More important is the general result, that a
discrete energy spectrum with energy gaps exists for an ideal 2DEG in a strong magnetic field and
that the degeneracy of each discrete level corresponds to the number of flux quanta (F · B)/(h/e)
within the area F of the sample. This corresponds to a carrier density ns = e · B/h for each fully
occupied spin-split energy level E0, N and therefore to a Hall resistance RH = h/i · e2 for i fully
occupied Landau levels as observed in the experiment. A typical magnetoresistance measurement
on a GaAs/AlGaAs heterostructure under QHE conditions is shown in Fig. 10.
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Figure 11: Discrete energy spectrum of a 2DEG in a magnetic field for an ideal system (no spin,
no disorder, infinite system, zero temperature). The Fermi energy (full red line) jumps between
Landau levels at integer filling factors if the electron concentration is constant.

Figure 12: Measured variation of the electrostatic potential of a 2DEG as a function of the magnetic
field. The red line marks a maximum in the coulomb oscillations of a metallic single electron on
top of the heterostructure, which corresponds to a constant electrostatic potential of the 2DEG
relative to the SET.
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This simple “explanation” of the quantized Hall resistance leads to the correct result but
contains unrealistic assumptions. A real Hall device has always a finite width and length with
metallic contacts and even high mobility devices contain impurities and potential fluctuations,
which lift the degeneracy of the Landau levels. These two important aspects, the finite size and
the disorder, will be discussed in the following chapters.

Figure 13: SET current as a function of time for different magnetic fields close to filling factor
1. The oscillations in the current originate from the relaxation of a non-equilibrium electrostatic
potential within the 2DEG originating from eddy currents due to the magnetic field sweep in the
plateau region. One oscillation in the SET current corresponds to a change in the “gate potential”
of about 1 meV.

3.1 Quantum Hall Systems with Disorder

Figure 14: Sketch of a device with a filling factor slightly below 1. Long-range potential fluctuations
lead to a finite area within the sample (localized carriers) with vanishing electrons (= filling factor
0) surrounded by an equipotential line. The derivation of the measured Hall voltage UH show, that
closed areas with another filling factor than the main part of the device leads to a Hall effect which
is not influenced by localized electrons.

The experimental fact, that the Hall resistance stays constant even if the filling factor is
changed (e.g. by varying the magnetic field at fixed density), cannot be explained within the
simple single particle picture for an ideal system. A sketch of the energy spectrum and the Fermi
energy as a function of the magnetic field is shown in Fig. 11 for such an ideal system at zero
temperature. The Fermi energy (full blue line) is located only at very special magnetic field values
in energy gaps between Landau levels so that only at these very special magnetic field values and
not in a finite magnetic field range the condition for the observation of the QHE is fulfilled. On the
other hand, if one assumes, that the Fermi energy remains constant as a function of the magnetic
field (dotted line in Fig. 11), wide plateaus for the quantized Hall resistance are expected, since
the Fermi energy remains in energy gaps (which correspond to integer filling factors and therefore
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to quantized Hall resistances) in a wide magnetic field range. However, this picture is unrealistic
since one has to assume that the electron concentration changes drastically as a function of the
magnetic field. If for example the Fermi energy crosses the Landau level N = 1, the electron
density has to change abruptly by a factor of two from filling factor 2 to filling factor 1. Such a
strong redistribution of charges between the 2DEG and an electron reservoir (doping layers, metallic
contacts) are in contradiction with electrostatic calculations. The most direct proof, that the Fermi
energy jumps across the gap between Landau levels within a relatively small magnetic field range
(at least smaller than the plateau width) is given by measurements of the electrostatic potential
between a metal (= wire plus sensor connected to the 2DEG) and the two-dimensional electron gas.
The electrochemical potential within the metal - 2DEG system has to be constant (thermodynamic
equilibrium) so that the magnetic field dependent variation in the chemical potential (characterized
by the Fermi energy) has to be compensated by a change in the electrostatic potential difference
between the metallic system and the 2DEG (=contact voltage). Such a variation in the electrostatic
potential has been measured directly [28] by using a metallic single electron transistor (SET) at
the surface of the quantum Hall device as shown in Fig 12. The electrostatic potential of the 2DEG
relative to the SET acts as a gate voltage, which influences drastically the current through the SET.
(The SET shows Coulomb blockade oscillations with a gate voltage period of about 1mV ). The
experimental data shown in Fig. 12 clearly demonstrate, that the contact voltage and therefore the
chemical potential of the two-dimensional system changes saw-tooth like as expected. The height
of the jumps corresponds directly to the energy gap. The “noise” at 2.8 Tesla (filling factor 4)
demonstrates, that the gate potential below the SET detector is fluctuating and not fixed by the
applied voltage ∆V2DES since the vanishing conductivity in the quantum Hall regime between
the metallic contacts at the boundary of the device and the inner parts of the sample leads to
floating potentials within the 2DEG system. Recent measurements have demonstrated [29], that
time constants of many hours are observed for the equilibration of potential differences between the
boundary of a QHE device and the inner part of the sample as shown in Fig. 13. The oscillations in
the SET current can be directly translated into a variation of the electrostatic potential below the
position of the SET since one period corresponds to a “gate voltage change” for the SET of about
1 meV. The non-equilibrium originates from a magnetic field sweep in regions of vanishing energy
dissipation, which generates eddy currents around the detector and corresponding Hall potential
differences of more than 100 meV perpendicular to these currents. These “Hall voltages” are not
measurable at the outer Hall potential probes (at the edge of the sample), since all eddy currents
cancel each other. The current distribution is unimportant for the accuracy of the quantized Hall

resistance!

In order to explain the width of the Hall plateaus, localized electrons in the tails of broadened
Landau levels have to be included. A simple thought experiment illustrates, that localized states
added or removed from fully occupied Landau levels do not change the Hall resistance (see Fig.
14). For long range potential fluctuations (e.g. due to impurities located close to the 2DEG) the
Landau levels follow this potential landscape so that the energies of the Landau levels change with
position within the plane of the device. If the energy separation between Landau levels is larger
than the peak value of the potential fluctuation, an energy gap still exists and a fully occupied
Landau level (e.g. filling factor 1) with the expected quantized Hall resistance RK can be realized.
In this picture, a filling factor 0.9 means, that 10% of the area of the device (= top of the hills in
the potential landscape) becomes unoccupied with electrons as sketched in Fig. 14. The boundary
of the unoccupied area is an equipotential line (with an unknown potential) but the externally
measured Hall voltage UH , which is the sum of the Hall voltages of the upper part of the sample
(current I2) and the lower part (current I1), adds up to the ideal value expected for the filling
factor 1 (grey regions). Eddy currents around the hole with i = 0 will vary the currents I1 and I2

but the sum is always identical with the external current I.

The quantized Hall resistance breaks down, if electronic states at the Fermi energy are ex-
tended across the whole device. This is the case for a half-filled Landau level if the simple percolation
picture is applied. Such a singularity at half-filled Landau levels has been observed experimentally
[30].

This simple picture of extended and localized electron states indicates, that extended states
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Figure 15: Skipping cyclotron orbits (= diamagnetic current) at the boundaries of a device are
equivalent to the edge channels in a 2DEG with finite size.

Figure 16: Ideal Landau levels for a device with boundaries. The fully occupied Landau levels in the
inner part of the device rise in energy close to the edge forming compressible (“metallic”) stripes
close to the crossing points of the Landau levels with the Fermi energy EF .

always exist at the boundary of the devices. This edge phenomenon is extremely important for a
discussion of the quantum Hall effect in real devices and will be discussed in more detail in the next
chapter. In a classical picture, skipping orbits as a result of reflected cyclotron orbits at the edge
lead to diamagnetic currents as sketched in Fig 15. Therefore, even if the QHE is characterized
by a vanishing conductivity σxx (no current in the direction of the electric field), a finite current
between source and drain of a Hall device can be established via this diamagnetic current. If the
device is connected to source and drain reservoirs with different electrochemical potentials (red
and blue color in Fig. 15), the skipping electrons establish different electrochemical potentials at
the upper and lower edge respectively. Energy dissipation appears only at the points (black dots
in Fig. 15) where the edge potentials differ from the source/drain potentials.
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Figure 17: Experimental determination of the position of incompressible (= insulating) stripes
close to the edge of the device for the magnetic field range 1.5 - 10 Tesla.

Figure 18: Hall potential distribution of a QHE device measured with an AFM. The innermost
incompressible stripe (= black lines) acts as an insulating barrier. The Hall potential is color coded
with about half of the total Hall voltage for the red-green potential difference.
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3.2 Edge Phenomena in QHE Devices

The simple explanation of the quantized Hall resistance as a result of fully occupied Landau levels
(with a gap at the Fermi energy) breaks down for real devices with finite size. For such a system
no energy gap at the Fermi energy exists under quantum Hall condition even if no disorder due
to impurities is included. This is illustrated in Fig. 16 where the energy of the Landau levels is
plotted across the width of the device. The Fermi energy in the inner part of the sample is assumed
to be in the gap for filling factor 2. Close to the edge (within a characteristic depletion length of
about 1µm) the carrier density becomes finally zero. This corresponds to an increase in the Landau
level energies at the edge so that these levels become unoccupied outside the sample. All occupied

Landau levels inside the sample have to cross the Fermi energy close to the boundary of the device.

At these crossing points “half-filled Landau levels” with metallic properties are present.

Selfconsistent calculations for the occupation of the Landau levels show that not lines but
metallic stripes with a finite width are formed parallel to the edge [31]. The number of stripes is
identical with the number of fully occupied Landau levels in the inner part of the device. These
stripes are characterized by a compressible electron gas where the electron concentration can
easily be changed since the Landau levels in these regions are only partly filled with electrons
and pinned at the Fermi energy. In contrast, the incompressible stripes between the compressible
regions represent fully occupied Landau levels with the typical isolating behavior of a quantum
Hall state. If the single electron transistor shown in Fig. 12 is located above an incompressible
region, increased noise is observed in the SET current similar to the noise at 2.8 Tesla in Fig. 12.
In order to visualize the position of the stripes close to the edge, not the SET is moved but an
artificial edge (= zero carrier density) is formed with a negative voltage at a gate metal located
close to the SET. The edge (= position with vanishing carrier density) moves with increasing
negative gate voltage closer to the detector and alternatively incompressible (increased SET noise)
and compressible strips (no SET noise) are located below the SET detector. The experimental
results in Fig. 17 confirm qualitatively the picture of incompressible stripes close to the edge which
move away from the edge with increasing magnetic field until the whole inner part of the device
becomes an incompressible region at integer filling factor. At slightly higher magnetic fields this
“bulk” incompressible region disappears and only incompressible stripes with lower filling factor
remain close to the boundary of the device.

The influence of the incompressible stripes on the Hall potential distribution has been mea-
sured with an atomic force microscope. The results in Fig. 18 show, that the innermost incom-
pressible stripe has such strong “insulating” properties that about 50% of the Hall potential drops
across this stripe. The other 50% of the Hall potential drops close to the opposite boundary of the
device across the equivalent incompressible stripe. In principle the incompressible stripes should
be able to suppress the backscattering across the width of a Hall device so that even for an ideal
device without impurities (= localized states due to potential fluctuations) a finite magnetic field
range with vanishing resistivity and quantized Hall plateaus should exist [32]. However, the fact,
that the plateau width increases systematically with increasing impurity concentration (and shows
the expected different behavior for attractive and repulsive impurities) shows, that localized states
due to impurities are the main origin for the stabilization of the quantized Hall resistance within a
finite range of filling factors. A vanishing longitudinal resistivity always indicates, that a backscat-
tering is not measurable. Under this condition the quantized Hall resistance is a direct consequence
of the transmission of one-dimensional channels [33].

4 Correlated Electron Phenomena in Quantum Hall Systems

Many physical properties of the quantum Hall effect can be discussed in a single electron picture
but it is obvious that the majority of modern research and publications in this field include electron
correlation phenomena. Even if the fractional quantum Hall effect [34] (which is a manifestation of
the strong electron-electron interaction in a two-dimensional system) can be nicely discussed as the
integer quantum Hall effect of weakly interacting quasi particles called composite fermions [35], the
many-body wave function of the quantum Hall system is the basis for the discussion of different
exciting new phenomena observed in correlated two-dimensional systems in strong magnetic fields.
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Many of these new phenomena can only be observed in devices with extremely high mobility where
the electron-electron interaction is not destroyed by disorder. Experiments on such devices indicate,
that phenomena like superfluidity and Bose-Einstein condensation [36], skyrmionic excitations [37],
fractional charges [38], a new zero resistance state under microwave radiation [39] or new phases
based on a decomposition of a half-integer filling factor into stripes and bubbles with integer filling
factors [40] are observable. The two-dimensional electron system in strong magnetic field seems
to be the ideal system to study electron correlation phenomena in solids with the possibility to
control and vary many parameters so that the quantum Hall effect will remain a modern research
field also in the future.
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[24] F. Delahaye and B. Jeckelmann, Metrologia 40, 217 (2003).

[25] The most recent values of fundamental constants recommended by CODATA are available at:
http://physics.nist.gov/cuu/constants/index.html.

[26] E.R. Williams, R.L. Steiner, D.B. Nevell, and P.T. Olsen, Phys. Rev. Lett. 81, 2404 (1998).

[27] E.H. Hall, American Journal of Mathematics, vol ii, 287 (1879).

[28] Y.Y. Wei, J. Weis, K. v. Klitzing and K. Eberl, Appl. Phys. Lett. 71 (17), 2514 (1997).
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