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1 Introduction

A hundred years ago, Einstein laid the foundation for a revolution in our conception of time
and space, matter and energy. In his remarkable 1905 paper “On the Electrodynamics of Moving
Bodies” [1], and the follow-up note “Does the Inertia of a Body Depend upon its Energy-Content?”
[2], he established what we now call special relativity as one of the two pillars on which virtually all
of physics of the 20th century would be built (the other pillar being quantum mechanics). The first
new theory to be built on this framework was general relativity [3], and the successful measurement
of the predicted deflection of light in 1919 made both Einstein the person and relativity the theory
internationally famous. The next great theory to incorporate relativity was the Dirac equation



80 C. M. Will Séminaire Poincaré

of quantum mechanics; later would come the stunningly successful relativistic theory of quantum
electrodynamics.

Strangely, although general relativity had its crucial successes, such as the bending of starlight
and the explanation of the advance of Mercury’s perihelion, special relativity was not so fortunate.
Indeed, many scholars believe that a lack of direct experimental support for special relativity in
the years immediately following 1905 played a role in the decision to award Einstein’s 1921 Nobel
Prize, not for relativity, but for one of his other 1905 “miracle” papers, the photoelectric effect,
which did have direct confirmation in the laboratory.

And although there were experimental tests, such as improved versions of the Michelson-
Morley experiment, the Ives-Stilwell experiment, and others, they did not seem to have the same
impact as the light-deflection experiment. Still, during the late 1920s and after, special relativity
was inexorably accepted by mainstream physicists (apart from those who participated in the anti-
Semitic, anti-relativity crusades that arose in Germany and elsewhere in the 1920s, coincident with
the rise of Nazism), until it became part of the standard toolkit of every working physicist. Quite
the opposite happened to general relativity, which for a time receded to the backwaters of physics,
largely because of the perceived absence of further experimental tests or consequences. General
relativity would not return to the mainstream until the 1960s.

On the 100th anniversary of special relativity, we see that the theory has been so thoroughly
integrated into the fabric of modern physics that its validity is rarely challenged, except by cranks
and crackpots. It is ironic then, that during the past several years, a vigorous theoretical and
experimental effort has been launched, on an international scale, to find violations of special rela-
tivity. The motivation for this effort is not a desire to repudiate Einstein, but to look for evidence
of new physics “beyond” Einstein, such as apparent violations of Lorentz invariance that might
result from certain models of quantum gravity. So far, special relativity has passed all these new
high-precision tests, but the possibility of detecting a signature of quantum gravity, stringiness, or
extra dimensions will keep this effort alive for some time to come.

In this paper we endeavor to provide a centenary perspective of special relativity. In Section
2, we discuss special relativity from a historical and pedagogical viewpoint, describing the basic
postulates and consequences of special relativity, at a level suitable for non-experts, or for experts
who are called upon to teach special relativity to non-experts. In Section 3, we review some of
the classic experiments, and discuss the famous “twin paradox” as an example of a frequently
misunderstood “consistency” test of the theory. Section 4 discusses special relativity in the broader
context of curved spacetime and general relativity, describes how long-range fields interacting
with matter can produce “effective” violations of Lorentz invariance and discusses experiments to
constrain such violations. In Section 5 we discuss whether gravity itself satisfies a version of Lorentz
invariance, and describe the current experimental constraints. In Section 6 we briefly review the
most recent extended theoretical frameworks that have been developed to discuss the possible ways
of violating Lorentz invariance, as well as some of the ongoing and future experiments to look for
such violations. Section 7 presents concluding remarks.

2 Fundamentals of special relativity

2.1 Einstein’s postulates and insights

Special relativity is based on two postulates that are remarkable for their simplicity, yet whose
consequences are far-reaching. They state [1]:

• The laws of physics are the same in any inertial reference frame.

• The speed of light in vacuum is the same as measured by any observer, regardless of the
velocity of the inertial reference frame in which the measurement is made.

The first postulate merely adopts the wisdom, handed down from Galileo and Newton, that
the laws of mechanics are the same in any inertial frame, and extends it to cover all the laws of
physics, notably electrodynamics, but also laws yet to be discovered. There is nothing radical or
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Figure 1: Time dilation of a clock moving at v = 3/5c between two identical laboratory clocks a
distance 6 m apart. The laboratory clocks each tick 10 times during the passage, while the moving
clock ticks only 8 times because the light rays travel farther to complete each tick, as seen from
the laboratory.

unreasonable about this postulate. It is the second postulate, that the speed of light is the same
to all observers, that is usually regarded as radical, yet it is also strangely conservative. Maxwell’s
equations stated that the speed of light was a fundamental constant, given by c = 1/

√
ε0µ0, where

ε0 and µ0 are the dielectric permittivity and magnetic permeability of vacuum, two constants that
could be measured in the laboratory by performing experiments that had nothing obvious to do
with light. That speed c, now defined to be exactly 299, 792, 458 m/sec, bore no relation to the
state of motion of emitter or receiver. Furthermore, there existed a set of transformations, found
by Lorentz, under which Maxwell’s equations were invariant, with an invariant speed of light.

In addition, Einstein was presumably aware of the Michelson-Morley experiment (although
he did not refer to it by name in his 1905 paper) which demonstrated no effect on the speed of light
of our motion relative to the so-called “aether” [4]. While the great physicists of the day, such as
Lorentz, Poincaré and others were struggling to bring all these facts together by proposing concepts
such as “internal time”, or postulating and then rejecting “aether drift”, Einstein’s attitude seems
to have been similar to that expressed in the American idiom: “if it walks like a duck and quacks
like a duck, it’s a duck”. If light’s speed seems to be constant, then perhaps it really is a constant,
no matter who measures it. Throughout his early career, Einstein demonstrated an extraordinary
gift for taking a simple idea at face value and “running” with it; he did this with the speed of light;
he did it with Planck’s quantum hypothesis and the photoelectric effect, also in 1905.

2.2 Time out of joint

An immediate and deep consequence of the second postulate is that time loses its absolute charac-
ter. First, the rate of time depends on the velocity of the clock. A very simple way to see this is to
imagine a thought experiment involving three identical clocks. Each clock consists of a chamber of
length h with a perfect mirror at each end. A light ray bounces back and forth between the mirrors,
recording one “tick” each time it hits the bottom mirror. In the rest frame of each clock the speed
of light is c (by the second postulate), so the duration of each “tick” is 2h/c according to observers
on each clock. Two of the clocks are at rest in a laboratory, a distance d apart along the x-axis,
arranged so that the light rays move in the y-direction. The two clocks have been synchronized
using a light flash from a lamp midway between them. The third clock moves with velocity v in



82 C. M. Will Séminaire Poincaré

the x-direction (Fig. 1). As it passes each of the laboratory clocks in turn, its own reading and
the reading on the adjacent laboratory clock are taken and later compared. The time difference
between the readings on the two laboratory clocks is clearly d/v or (d/v)/(2h/c) ticks. But from the
point of view of the laboratory, the light ray on the moving clock moves in a saw-tooth manner as
the mirrors move, with the distance along the hypotenuse of each tooth given by l =

√

h2 + (vt)2

where t is the time taken as seen from the lab. But at the speed of light, this time is given by l/c,
so the duration of a “tick” on the moving clock from the lab viewpoint is given by (2h/c)γ, where
γ = 1/

√

1 − v2/c2. Thus the number of ticks on the moving clock between its encounters with the

lab clocks is (d/v)/(2h/c) ×
√

1 − v2/c2. If we define “proper time” ∆τ as the time elapsed on a
single clock between two events at its own location, and ∆t as the time difference measured by the
two separated laboratory clocks, then

∆τ = ∆t
√

1 − v2/c2 . (1)

This is the time dilation: the time elapsed between two events along the path of a single moving
clock is less than that measured by a pair of synchronized clocks located at the two events. The
asymmetry is critical: A clock can only make time readings along its own world line, thus two

synchronized clocks are required in the laboratory, in order to make comparisons with readings on
the moving clock.

While this time dilation was already recognized at some level by Lorentz and others as a
consequence of the Lorentz transformations, they were unable or unwilling to recognize its true
meaning, because they remained wedded to the Newtonian view of an absolute time. Einstein,
possibly because of his early contact with the machinery and equipment of his father’s factories,
was able to view time operationally: time is what clocks measure. If one thinks of a clock as
any device that performs some precisely repetitive activity governed fundamentally by the laws
of physics, then it becomes obvious that time in the moving frame really does tick more slowly
than in the lab. And this is not some abstract, internal time, this is time measured by our mirror
clock, by an atomic clock, by a biological clock, by a human heartbeat, all of which are governed
by the laws of physics, which are the same in every inertial frame. From any conceivable observable
viewpoint this is time.

In the thought experiment above we remarked that the laboratory clocks were synchronized.
This seemingly obvious and innocuous statement also has deep consequences, because, as Einstein
realized, if the speed of light is the same for all observers, then synchronization is relative. Consider
two observers on the ground who synchronize their clocks by setting them to read the same when
a light flash from a point midway between them is received. Now consider observers on a train
moving by (who have previously synchronized their own clocks using the same method on the
train). The light flash emitted by the lamp on the ground has speed c in both directions as seen
from the train (second postulate), therefore the forward moving flash will encounter the forward
ground clock (which is moving toward the lamp as seen from the train) before the backward moving
flash encounters the rear ground clock (which is receding). The events of reception of the light flash
by the two ground clocks are simultaneous in the ground frame, but are not simultaneous in the
train’s frame. Again, this was embodied mathematically in the Lorentz transformation, but it was
Einstein who inferred this truth about time: events simultaneous in one frame, are not automatically
simultaneous in a moving frame.

Much has been written about why Einstein was able to arrive at this new view of time, while
his contemporaries, including great men like Lorentz and Poincaré, were not. Henri Poincaré is
a case in point. By 1904 Poincaré understood almost everything there was to understand about
relativity. In 1904 he journeyed to St. Louis to speak at the scientific congress associated with the
World’s Fair, on the newly relocated campus of my own institution, Washington University. In
reading Poincaré’s paper “The Principles of Mathematical Physics” [5], one senses that he is so
close to having special relativity that he can almost taste it. Yet he could not take the final leap to
the new understanding of time. This is ironic, because as Peter Galison has written [6], Poincaré was
one of the world’s leaders in the understanding of clock synchronization, having served on French
and international agencies and committees charged with establishing the world-wide conventions
for time-synchronization and time transfer that were needed for transportation, navigation and
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Figure 2: Spacetime diagram showing a laboratory frame and a frame moving at v = c/3.

telegraphy. Surely Poincaré would have understood our example of the moving train, yet it seems
that he could not go beyond viewing it as merely conventional. To Einstein, it reflected what clocks
measure, and therefore reflected the true nature of time.

2.3 Spacetime and Lorentz invariance

If the speed of light is the same to all observers, then time and space can be put on a similar footing
initially by measuring time in units of distance, so that t in meters stands for ct, and corresponds
to the time it takes for light to travel one meter (3.336 nanoseconds). We will call this time in
distance units the coordinate x0. One can then describe space and time together on a spacetime
diagram, with points representing “events”, “worldlines” representing the trajectories of particles
through space and time and so on.

A train moving with speed v, with the caboose passing the origin at x0 = 0 has the collection
of world lines shown in Fig. 2 (one for each car in the train), each with slope 1/v. The line passing
through the origin is called the x0′ axis, just as in Galilean relativity. By carefully considering how
clocks on the train would be synchronized, either using a master lamp as in the example above,
or by using round-trip signals (often called Einstein synchronization), it is easy to show that the
collection of events on the train that are simultaneous with the origin lie along the x′-axis shown,
with slope v. Later “lines of simultaneity” on the train are also shown. Figure 2 makes it clear
how all observers can agree on the speed of light. A light ray emanating from the origin of Fig. 2
follows a 45o line, or a line that bisects the x and x0 axes. But that line also bisects the x′ and x0′

axes, thus observers on the train will also find speed c for that ray.

These considerations establish only the slopes of the lines, however. They do not tell us
where, for example, to mark 1 meter on the x′-axis. To resolve this, we return to our simple
moving clock example, and notice that, while the time difference and spatial difference between
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the events describing one “tick” of the moving clock are given by ∆t′ = 2h/c and ∆x′ = 0 in its
own frame, and by the different values ∆t = γ(2h/c) and ∆x = v∆t = vγ(2h/c) in the lab frame,
the quantity ∆s2 ≡ −c2∆t2 +∆x2 is the same for the tick, whether calculated in the clock’s frame
or in the lab frame. This is the “invariant interval”, given for general infinitesimal displacements
by

ds2 = −c2dt2 + dx2 + dy2 + dz2

= −(dx0)2 + dx2 + dy2 + dz2

= ηµνdxµdxν , (2)

where ηµν = diag(−1, 1, 1, 1) is the Minkowski metric, Greek indices run over four spacetime
values, and we use the Einstein convention of summing over repeated indices. If one then asks,
what linear transformations from one inertial frame to a moving inertial frame will leave this
interval invariant in form, or equivalently will leave the Minkowski metric invariant, the answer is
the Lorentz transformations: for a boost in the x-direction, they are given by

(x0)′ = γ(x0 − vx) ,

x′ = γ(x − vx0) . (3)

For a general boost with velocity vi, they are given by xα′

= Λα′

β xβ , where

Λ0′

0 = γ , Λ0′

i = Λi′

0 = −γvi , Λi′

j = δi
j + (γ − 1)vivj/v2 . (4)

This is called Lorentz invariance of the interval (or metric). The form of the interval is also invariant
under ordinary rotations, and under displacements such as xα → xα + aα. Collectively this larger
10 parameter invariance is called Poincaré invariance. The Lorentz transformations then allow one
to establish the scale of the axes of the moving frame, as shown in Fig. 2 for the case v = c/3.

These are the same transformations, of course, as those found to leave Maxwell’s equations
invariant. Einstein’s first postulate, that the laws of physics should be the same in every inertial
frame, therefore places a stringent constraint on the design of any future fundamental laws, namely
that they should be Lorentz invariant, at least when viewed from an inertial frame. This constraint
has guided the great advances in fundamental theory of the 20th century, such as relativistic quan-
tum mechanics and the Dirac equations, quantum electrodynamics, quantum chromodynamics,
superstring theory, not to mention general relativity.

2.4 Special relativistic dynamics

By considering the acceleration of a charged particle in an electromagnetic field and imposing
the principle of relativity [1], Einstein concluded that the equations of dynamics would have to
be modified. Further, in another characteristic example of his ability to use a simple thought
experiment to derive profound consequences, Einstein established the equivalence between mass
and energy [2]. He considered the simple situation of a particle emitting an equal amount of
electromagnetic radiation in opposite directions. He then considered the same situation from the
viewpoint of a moving inertial frame. By imposing conservation of energy in both frames, and using
the transformation laws for electromagnetic radiation, he concluded, working in the low-velocity
limit, that the difference in kinetic energy of the particle before and after the emission, as seen in
the moving frame, had to be given by 1

2Ev2/c2, where E is the energy of the emitted light. But
since kinetic energy in this limit is given by 1

2mv2, then the mass of the particle must have changed
by E/c2 during the emission of energy E.

What emerged from these considerations was a new relativistic dynamics. One must replace
the Newtonian formulation of F = ma with a relativistically correct formulation ~F = d~p/dτ , where

the force ~F is now a four-vector, ~p is the four-momentum, given for a particle of rest mass m0 by
~p = m0~u, where the four-velocity ~u has components uα = dxα/dτ , and where dτ = ds/c denotes
proper time along the particle’s worldline. If the force is provided by electromagnetic fields, then
F ν = (e/c)uµF µν , where e is the charge of the particle, and F µν is the antisymmetric Faraday
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tensor, whose components in a given inertial frame may be identified as Fi0 = Ei, Fij = εijkBk,
where Ei and Bi are the normal electric and magnetic fields. This dynamics, along with Maxwell’s
equations, can be derived from the action

I = −
∑

a

m0ac

∫

(−ηµνuµ
auν

a)1/2dτ +
∑

a

ea

c

∫

Aµ(xν
a)dxµ

a

− 1

16π

∫ √−η ηµαηνβFµνFαβd4x , (5)

where uµ
a is the four-velocity of the particle, Aµ(xν) is the electromagnetic four-vector potential,

and Fµν ≡ ∂Aν/∂xµ − ∂Aµ/∂xν . In ordinary variables, in a given inertial frame, the action takes
the form

I = −
∑

a

m0ac2

∫

(1 − v2
a/c2)1/2dt +

∑

a

ea

∫

(−Φ + A · va/c)dt

+
1

8π

∫

(E2 − c2B2)d3xdt , (6)

where Φ = −A0, E = −∇Φ − Ȧ/c, and B = ∇×A.

3 Classic tests of special relativity

3.1 The Michelson-Morley experiment

From today’s perspective the null result of the 1887 Michelson-Morley aether-drift experiment
marked the beginning of the end for the Newtonian notions of absolute space and time. Yet it
took almost 20 years for the new view of spacetime to be realized. The experiment was beautiful
in its simplicity, and should have been a “slam dunk” for conventional 19th century physics. If
the speed of light is a fundamental constant, then it must take this value in some preferred frame,
presumably that of a luminiferous aether, which would be at rest with respect to the universe, and
which would provide the medium that every one thought was necessary for the propagation of light.
For any observer moving relative to the aether, the speed of light would be formed by subtracting
the velocity vector of the observer from that of the light ray. In one of the interferometers that
Michelson had pioneered for measuring the speed of light itself, the speed of light up and down an
arm that was parallel to our motion through the aether would be c + v and c− v, while the speed
along an arm perpendicular to our motion would be

√
c2 + v2. For an equal-arm interferometer of

length h, the difference in round trip travel time along the two arms would then be, to first order
in (v/c)2, ∆T = (h/c)(v/c)2. This would be reflected in a change in the interference pattern of the
recombined beams, that would shift as the apparatus was rotated, thereby interchanging the roles
of the two arms.

But instead of the predicted shift, Michelson and Morley found no effect, and placed an upper
limit on a shift 40 times smaller than the shift predicted [4], and later experiments only improved
the bounds (see [7] for a review up to 1955). Attempts to explain this by arguing that the aether
was “dragged” by the Earth proved to be untenable. Lorentz wrote to Lord Rayleigh in 1892, “I
am totally at a loss to clear away this contradiction . . . Can there be some point in the theory of
Mr. Michelson’s experiment which has been overlooked?”[7]. Lorentz and FitzGerald attempted to
resolve the problem by proposing that the interferometer arms parallel to the motion through the
aether were shortened by the factor

√

1− v2/c2, but could not suggest what this meant [8, 9].
Special relativity resolved the Michelson-Morley experiment instantly. In the rest frame of

the experiment, the speed of light is the same, irrespective of the instrument’s motion relative to
the universe, so the experiment should automatically give a null result. Indeed, the aether now
becomes completely irrelevant. Alternatively, from the point of view of a frame at rest relative
to the universe, careful consideration of how length is measured in special relativity showed that
the interferometer arm moving parallel to its length must be shortened by the precise Lorentz-
FitzGerald factor. The null experimental result could be derived from either frame of reference.
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In placing the Michelson-Morley (MM) experiment in a modern context, it is useful to view it
not as an interferometer experiment, but as a clock anisotropy experiment. Each arm of the inter-
ferometer can be thought of as a clock just like the clocks used in Sec. 2.2 above. The fundamental
question then becomes, is the rate of a clock independent of its orientation relative to its motion
through the universe? Most modern incarnations of the MM experiment are clock anisotropy ex-
periments. For example, MM experiments using lasers [10, 11] compare two laser resonant cavities
by beating their frequencies against each other as one or both rotate relative to the universe.

One can invent a way to parametrize the MM experiment so as to quantify how the null result
could be violated, that turns out to be useful in more general contexts. Suppose that, working in
the rest frame of the universe (we may discard the aether, but the rest-frame of the universe,
as reflected by the rest frame of the cosmic background radiation, has a well defined meaning),
the speed of light is c. But suppose that the Lorentz-FitzGerald contraction of the parallel arm
is given by the factor

√

1 − v2/c2
0, where c0 is a different speed (measured in the universe rest

frame), that is connected with whatever dynamics determines the structure of the walls of the
cavity that forms our clock. Then it is easy to show that, while the time for one tick of the clock
perpendicular to the motion is given by (2h/c)(1/

√

1 − v2/c2), the time for one tick of the parallel

clock is (2h/c)[
√

1 − v2/c2
0/(1− v2/c2)]. To first order in (v/c)2, the differential clock time is given

by (h/c)(v/c0)
2δ, where δ = (c0/c)2 − 1.

If Lorentz invariance holds, then the electrodynamics that governs the solids that form the
cavity must involve the same c as that which governs the propagation of light, hence c0 = c, δ = 0
and we recover the null prediction for the MM experiment. Below we will discuss classes of theories
that involve curved spacetime plus certain kinds of long-range fields, in which this no longer holds.
Figure 4 shows selected bounds on δ that were achieved in the original MM experiment, and in
later experiments of the MM type by Joos and a 1979 test using laser technology by Brillet and
Hall [11]. In that Figure, units are chosen so that c0 = 1.

3.2 Invariance of c

Several classic experiments have been performed to verify that the speed of light is independent of
the speed of the emitter. If the speed of light were given by c + kv, where v is the velocity of the
emitter, and k is a parameter to be measured or bounded, then orbits of binary star systems would
appear to have an anomalous eccentricity unexplainable by normal Newtonian gravity. However,
at optical wavelengths, this test is not unambiguous because light is absorbed and reemitted by the
intervening interstellar medium, thus losing the memory of the speed of the source, a phenomenon
known as extinction. But at X-ray wavelengths, the path length of extinction is tens of kiloparsecs,
so nearby X-ray binary sources in our galaxy may be used to test the velocity dependence of light.
Using data on pulsed 70 keV X-ray binary systems, Her S-1, Cen X-3 and SMC X-1, Brecher [12]
obtained a bound |k| < 2 × 10−9, for typical orbital velocities v/c ∼ 10−3.

At the other extreme, a 1964 experiment at CERN used ultrarelativistic particles as the source
of light. Neutral pions were produced by the collisions of 20 GeV protons on stationary nucleons in
the proton synchrotron. With energies larger than 6 GeV, the pions had v/c ≥ 0.99975. Photons
produced by the decay π0 → γ1 + γ2 were collimated and timed over a 30 meter long flight path.
Because the protons in the synchrotron were pulsed, the speed of the photons could be measured
by measuring the arrival times of their pulses as a function of the varying location of the detector
along the flight path. The result for the speed was 2.9977± 0.0004× 108 m/sec, in agreement with
the laboratory value [13]. This experiment thus set a bound |k| < 10−4 for v ≈ c.

3.3 Time dilation

The observational evidence for time dilation is overwhelming. Ives and Stilwell [14] measured the
frequency shifts of radiation emitted in the forward and backward direction by moving ions of H2

and H3 molecules. The first-order Doppler shift cancels from the sum of the forward and backward
shifts, leaving only the second-order time-dilation effect, which was found to agree with theory.
(Ironically, Ives was a die-hard opponent of special relativity.)
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A classic experiment performed by Rossi and Hall [15] showed that the lifetime of µ-mesons
was prolonged by the standard factor γ = 1/

√

1 − v2/c2. Muons are created in the upper atmo-
sphere when cosmic ray protons collide with nuclei of air, producing pions, which decay to muons.
With a rest half-life of 2.2×10−6 s, a muon travelling near the speed of light should travel only 2/3
of a kilometer on average before decaying to a harmless electron or positron and two neutrinos. Yet
muons are the primary component of cosmic radiation detected at sea level. But with time dilation
and a typical speed of v/c ∼ 0.994, their lives as seen from Earth are prolonged by a factor of nine,
easily enough for them to reach sea level. Rossi and Hall measured the distribution of muons as a
function of altitude and also measured their energies, and confirmed the time dilation formula. In
fact, since collisions between cosmic ray muons and DNA molecules are a non-negligible source of
natural genetic mutations, one could even argue that special relativity plays a role in evolution!

In an experiment performed in 1966 at CERN, muons produced by collisions at one of the
targets in the accelerator were deflected by magnets so that they would move on circular paths in a
“storage ring”. Their speeds were 99.7 percent of the velocity of light, and the observed twelve-fold
increase in their lifetimes agreed with the prediction with 2 percent accuracy [16].

3.4 Lorentz invariance and quantum mechanics

The integration of Lorentz invariance into quantum mechanics has provided a string of successes for
special relativity. The first was the discovery of the Dirac equation, the relativistic generalization
of Schrödinger quantum mechanics, with its prediction of anti-particles and elementary particle
spin. Another was the development of relativistic quantum field theory. QFT naturally embodies
the Pauli exclusion principle, by requiring that the creation and annihilation operators of spinor
fields satisfy anticommutation relations in order to obey Lorentz invariance. Since the Pauli exclu-
sion principle explains the occupation of atomic energy levels by electrons, one could argue, with
but a hint of chauvinism, that special relativity explains Chemistry! The modern incarnations
of QFT, such as Quantum Electrodynamics, Electroweak Theory, Quantum Chromodynamics all
have Lorentz invariance as foundations. However, until recently, the experimental successes of such
theories have not been used to attempt to quantify how well Lorentz invariance holds. We will
return to this subject in Sec. 6.

3.5 Consistency tests of special relativity

Over the years, special relativity has been subjected to a series of tests, not of its experimental
predictions, but of its very logic. Many of its predictions, such as the slowing of time on moving
clocks, were deemed to be so strange, so beyond normal experience, that there had to be something
wrong with the theory. The idea was to find “paradoxes”, simple situations where the theory could
be shown to be logically inconsistent.

Of course, there are no paradoxes! To be sure, the idea of time dilation may be hard to
understand or to swallow, but there is absolutely nothing paradoxical about it.

The most popular of these is, of course, the twin paradox. In his 1905 paper, Einstein himself
presents the situation clearly [1]: “If one of two synchronous clocks at A is moved in a closed curve
with constant velocity until it returns to A, the journey lasting t seconds, then by the clock which
has remained at rest the travelled clock on its arrival at A will be 1

2 tv2/c2 seconds slow.”

The more modern versions of the story go something like this: On New Year’s Day 3000,
an astronaut (A) sets out from Earth at speed 0.6 c and travels to the nearest interstellar Space
Station, Clinton-1, which is 3 light-years away as measured in the Earth frame of reference (Fig.
3). Having reached Clinton-1, she immediately turns around and returns to Earth at the same
speed, arriving home on New Year’s Day 3010, by Earth time. The astronaut has a twin brother
(B), who remains on Earth.

From the point of view of Earth’s inertial frame, astronaut A’s clock runs slow, with her proper
time elapsed on the outbound journey being given by Eq. (1), amounting to 4 years, compared
with 5 years on Earth. The times elapsed on the return journey are the same (the total proper
time elapsed during the accelerated motion needed for the turnaround can be made as small as
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Figure 3: Twin Paradox as seen from traveller’s viewpoint

one likes applying large accelerations for a short time). Astronaut A returns having aged 8 years,
compared to the 10 years aging of her twin brother.

The “paradox” is then stated as follows: from the astronaut A’s point of view, Earth’s clocks
run slow, so A should return older than her brother, not younger. Since this is a logical contradic-
tion, relativity is untenable.

The flaw in the “paradox” is the failure to comprehend what is meant by “A sees Earth’s
clock run slow”. A cannot compare her clock with Earth’s clock because she is nowhere near Earth
except at the start of the journey. Instead, an inertial frame moving outbound with A’s velocity
must be created, with a set of observers carrying clocks synchronized with hers. The readings on
Earth’s clock can only be read by one of these observers who happens to be passing the Earth
at that moment of time. But because of the relativity of simultaneity, the event in this outbound
frame that is simultaneous with A’s turnaround event P is not the 5-year mark on Earth, but is
event X on Fig. 3, which is at Earth year 3003.2. So observers in A’s outbound frame do agree
that Earth’s clock has run slow compared to hers, 3.2 years compared to 4 years. But while A
decelerates and accelerates for the return journey, that outbound inertial frame continues flying off
at 0.6 c forever, and A must pick up a new inertial frame inbound at 0.6 c. In that frame, the event
that is simultaneous with the turnaround is at event Y, Earth year 3006.8, 3.2 years before the
return. Again, observers in the inbound inertial frame agree that Earth’s clock runs slow during
the return journey, 3.2 years, compared to A’s 4 years. But the analysis using the two inertial
frames has failed to account for the 3.6 years between events X and Y.

This is not a paradox, it’s merely sloppy accounting (perhaps the twin paradox should be
renamed the Enron of Relativity). With a knowledge of the relativity of simultaneity, astronaut
A could easily conclude that the gap between the two lines of simultaneity corresponding to her
turnaround is 3.6 years; alternatively she could consult observers in an infinite sequence of inertial
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frames corresponding to all the velocities of her spacecraft from v to −v and add up all the
infinitesimal increments of Earth’s clock as read by these observers, and account for the 3.6 missing
years. Either way, she reaches the unambiguous conclusion that she ages a total of 8 years, while
her twin ages 10 years.

It is sometimes claimed that the resolution of the twin paradox must ultimately involve
general relativity, because the traveller accelerates, and acceleration is equivalent to gravitation.
As the discussion above shows, acceleration plays no role in the analysis, other than to provide
the asymmetry whereby the traveller must occupy more than one inertial frame, while the home-
bound twin occupies a single inertial frame throughout. The relativity of simultaneity is the key,
not gravity.

In fact, the relativity of simultaneity is the key to resolving essentially all of the “paradoxes”
that have been devised to test the logical structure of special relativity, such as the “pole in the
barn” paradox (a rapidly moving pole is short enough to fit inside a barn, at least momentarily,
from the barn’s point of view, but can’t possibly fit from the pole’s point of view), the “space-
war paradox”, “the jumping frog paradox” and others. For discussion of these and many other
paradoxes, see [17].

4 Special relativity and curved spacetime

Special relativity and general relativity are often viewed as being independent. One reason for this
apparent division is that Einstein presented special relativity 100 years ago in 1905, while general
relativity was not published in its final form until 1916. Another reason is that the two parts
of the theory have very different realms of applicability: special relativity mainly in the world of
microscopic physics, and general relativity in the world of astrophysics and cosmology.

But in fact, the theory of relativity is a single, all-encompassing theory of space-time, gravity
and mechanics. Special relativity is actually an approximation to curved space-time that is valid
in sufficiently small regions of space-time (called “local freely falling frames”), much as small
regions on the surface of an apple are approximately flat, even though the overall surface is curved.
Special relativity can therefore be used whenever the scale of the phenomena being studied is small
compared with the scale on which the curvature of space-time (i.e. gravity) begins to be noticed.
For most applications in atomic or nuclear physics, this approximation is so accurate that special
relativity can be assumed to be exact.

Historically, however, Einstein’s journey from special to general relativity was tortuous and
difficult. It began in 1907 with what he has called “the happiest thought” of his life. According
to numerous experiments, all laboratory-sized bodies fall with the same acceleration, regardless of
their mass, composition or structure, in a given external gravitational field. Einstein was probably
aware of experiments performed by Eötvös around the turn of the 20th century [18], that demon-
strated this “universality of free fall” to parts in 109. The modern bounds are at the level of parts
in 1013 [19].

From this simple fact, Einstein noticed that if an observer were to ride in an elevator falling
freely in a gravitational field, then all bodies inside the elevator would move uniformly in straight
lines as if gravity had vanished. Conversely, in an accelerated elevator in free space, where there
is no gravity, the bodies would fall with the same acceleration because of their inertia, just as if
there were a gravitational field.

Einstein’s great insight was to postulate that this “vanishing” of gravity in free fall or its
“presence” in an accelerating frame applied not only to mechanical motion but to all the laws of
physics, such as electromagnetism. Thus, in an accelerating frame, a light ray moving horizontally
would be seen to be deflected downward, and a ray moving upward or downward would have its
frequency shifted [20, 21].

For the next 8 years, Einstein looked for a theory that would embody this principle of equiv-
alence, be compatible with Lorentz invariance in the absence of gravity, and reflect his goals of
elegance and simplicity, succeeding finally in the fall of 1915 [3].
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4.1 Einstein’s equivalence principle

Our modern viewpoint of the foundations of general relativity is based on an extension and em-
bellishment of Einstein’s principle of equivalence. Much of this viewpoint can be traced back to
Robert Dicke, who contributed crucial ideas about the foundations of gravitation theory between
1960 and 1965. These ideas were summarized in his influential Les Houches lectures of 1964 [22]
and resulted in what has come to be called the Einstein equivalence principle (EEP), which states
that

• test bodies fall with the same acceleration independently of their internal structure or com-
position (universality of free fall, also called the weak equivalence principle, or WEP);

• the outcome of any local non-gravitational experiment is independent of the velocity of the
freely-falling reference frame in which it is performed (local Lorentz invariance, or LLI)

• the outcome of any local non-gravitational experiment is independent of where and when in
the universe it is performed (local position invariance, or LPI).

The Einstein equivalence principle is the heart of gravitational theory, for it is possible to
argue convincingly that if EEP is valid, then gravitation must be described by “metric theories of
gravity”, which state that (i) spacetime is endowed with a symmetric metric, (ii) the trajectories
of freely falling bodies are geodesics of that metric, and (iii) in local freely falling reference frames,
the non-gravitational laws of physics are those written in the language of special relativity. For
further discussion, see [23].

One way to see that spacetime cannot be flat is the following. Consider two freely-falling
frames on opposite sides of the Earth. According to the Einstein equivalence principle, space-time
is Minkowkian in each frame, but because the frames are accelerating toward each other, the two
space-times cannot be extended and meshed into a single Minkowskian space-time. In the presence
of gravity, space-time is flat locally but curved globally.

4.2 Metric theories of gravity

The simplest way to incorporate the Einstein equivalence principle mathematically into the special
relativistic dynamics of particles and fields is to replace the Minkowski metric in the action of
Eq. (5) with the curved-spacetime metric gµν , and to replace ordinary derivatives with covariant
derivatives, yielding the action

I = −
∑

a

m0ac

∫

(−gµνuµ
auν

a)1/2dτ +
∑

a

ea

c

∫

Aµ(xν
a)dxµ

a

− 1

16π

∫ √−g gµαgνβFµνFαβd4x , (7)

where dτ = ds/c, with ds2 = gµνdxµdxν . The only way that “gravity” enters is via the metric gµν .
Any theory whose equations for matter can be cast into this form is called a metric theory.

As a result, the non-gravitational interactions couple only to the spacetime metric gµν , which
locally has the Minkowski form ηµν of special relativity. Because this local interaction is only with
ηµν , local non-gravitational physics is immune from the influence of distant matter, apart from
tidal effects. Local physics is Lorentz invariant (because ηµν is) and position invariant (because
ηµν is constant in space and time).

General relativity is a metric theory of gravity, but so are many others, including the Brans-
Dicke theory. In this sense, superstring theory is not metric, because there is a residual coupling of
external, gravitation-like fields, to matter. Theories in which varying non-gravitational constants
are associated with dynamical fields that couple to matter directly are also not metric theories.
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4.3 Effective violations of local Lorentz invariance

How could violations of LLI arise? From the viewpoint of field theory, violations would generically
be caused by other long-range fields in addition to gµν which also couple to matter, such as scalar,
vector and tensor fields. Theories that have this property are called non-metric theories. A simple
example of such a theory is one in which the matter action is given by

I = −
∑

a

m0ac

∫

(−gµνuµ
auν

a)1/2dτ +
∑

a

ea

c

∫

Aµ(xν
a)dxµ

a

− 1

16π

∫ √
−h hµαhνβFµνFαβd4x , (8)

where hµν is a second, second-rank tensor field. Locally, one can always find coordinates (local
freely-falling frame) in which gµν → ηµν , but in general hµν 6→ ηµν ; instead hµν → (h0)µν , where
(h0)µν is a tensor whose values are determined by the cosmology or nearby mass distribution. In
the rest frame of the distant matter distribution, (h0)µν will have specific values, and there is no
reason a priori why those should correspond to the Minkowski metric (unless hµν were identical
to gµν in the first place, in which case one would have a metric theory). Also, in a frame moving
with respect to the distant sources of hµν , the local values of (h0)µν will depend on the velocity of
the frame, thereby producing effective violations of Lorentz invariance in electrodynamics.

A number of explicit theoretical frameworks were developed between 1973 and 1990 to treat
non-metric theories of this general type. They include the “THεµ” framework of Lightman and
Lee [24], the χ − g framework of Ni [25], the c2 framework of Haugan and coworkers [26, 27], and
the extended THεµ framework of Vucetich and colleagues [28].

In the c2 framework, one assumes a class of non-metric theories in which the particle and
interaction parts of the action Eq. (8) can be put into the local special relativistic form, using units
in which the limiting speed of neutral test particles is unity, and in which the sole effect of any
non-metric field coupling to electrodynamics is to alter the effective speed of light. The result is
the action

I = −
∑

a

m0a

∫

(1 − v2
a)1/2dt +

∑

a

ea

∫

(−Φ + A · va)dt

+
1

8π

∫

(E2 − c2B2)d3xdt . (9)

Because the action is explicitly non-Lorentz invariant if c 6= 1, it must be defined in a preferred
universal rest frame, presumably that of the 3K microwave background. In this frame, the value
of c2 is determined by the cosmological values of the non-metric field. Even if the non-metric field
coupling to electrodynamics is a tensor field, the homogeneity and isotropy of the background
cosmology in the preferred frame is likely to collapse its effects to that of the single parameter
c2. Detailed calculations of a variety of experimental situations show that those “preferred-frame”
effects depend on the magnitude of the velocity through the preferred frame (∼ 350 km/sec), and
on the parameter δ ≡ c−2 − 1. In any metric theory or theory with local Lorentz invariance, δ = 0.

One can then set observable upper bounds on δ using a variety of experiments. In the
Michelson-Morley experiment, by considering the behavior of amorphous solids in the dynam-
ics above, one can show that the length of the “parallel” clock is shortened by the factor

√
1 − v2;

in our units, the speed c0 of Sec. 3.1 is unity. Thus the MM experiment sets the bound δ < 10−3.
Better bounds on δ have be set by other “standard” tests of special relativity, such as descen-

dents of the Michelson-Morley experiment [4, 7, 11], a test of time-dilation using radionuclides on
centrifuges [29], tests of the relativistic Doppler shift formula using two-photon absorption (TPA)
[30], and a test of the isotropy of the speed of light using one-way propagation of light between
hydrogen maser atomic clocks at the Jet Propulsion Laboratory (JPL) [31].

Very stringent bounds |δ| < 10−21 have been set by “mass isotropy” experiments of a kind
pioneered by Hughes and Drever [32, 33]. The idea is simple: in a frame moving relative to the
preferred frame, the non-Lorentz-invariant electromagnetic action of Eq. (9) becomes anisotropic,



92 C. M. Will Séminaire Poincaré
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Figure 4: Bounds on violations of local Lorentz invariance

dependent on the direction of the velocity V. Those anisotropies then are reflected in the energy
levels of electromagnetically bound atoms and nuclei (for nuclei, we consider only the electromag-
netic contributions). For example, the three sublevels of an l = 1 atomic or nuclear wavefunction in
an otherwise spherically symmetric atom can be split in energy, because the anisotropic perturba-
tions arising from the electromagnetic action affect the energy of each substate differently. One can
study such energy anisotropies by first splitting the sublevels slightly using a magnetic field, and
then monitoring the resulting Zeeman splitting as the rotation of the Earth causes the laboratory
B-field (and hence the quantization axis) to rotate relative to V, causing the relative energies of the
sublevels to vary among themselves diurnally. Using nuclear magnetic resonance techniques, the
original Hughes-Drever experiments placed a bound of about 10−16 eV on such variations. This is
about 10−22 of the electromagnetic energy of the nuclei used. Since the magnitude of the predicted
effect depends on the product V 2δ, and V 2 ≈ 10−6, one obtains the bound |δ| < 10−16. Energy
anisotropy experiments were improved dramatically in the 1980s using laser-cooled trapped atoms
and ions [34, 35, 36]. This technique made it possible to reduce the broading of resonance lines
caused by collisions, leading to improved bounds on δ shown in Figure 4 (experiments labelled
NIST, U. Washington and Harvard, respectively).

5 Is gravity Lorentz invariant?

The strong equivalence principle (SEP) is a generalization of EEP which states that in local
“freely-falling” frames that are large enough to include gravitating systems (such as planets, stars, a
Cavendish experiment, a binary system, etc.), yet that are small enough to ignore tidal gravitational
effects from surrounding matter, local gravitational physics should be independent of the velocity
of the frame and of its location in space and time. Also all bodies, including those bound by their
own self-gravity, should fall with the same acceleration. General relativity satisfies SEP, whereas
most other metric theories do not (eg. the Brans-Dicke theory).

It is straightforward to see how a gravitational theory could violate SEP [37]. Most alternative
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metric theories of gravity introduce auxiliary fields which couple to the metric (in a metric theory
they can’t couple to matter), and the boundary values of these auxiliary fields determined either
by cosmology or by distant matter can act back on the local gravitational dynamics. The effects
can include variations in time and space of the locally measured effective Newtonian gravitational
constant G (preferred-location effects), as well as effects resulting from the motion of the frame
relative to a preferred cosmic reference frame (preferred-frame effects). Theories with auxiliary
scalar fields, such as the Brans-Dicke theory and its generalizations, generically cause temporal and
spatial variations in G, but respect the “Lorentz invariance” of gravity, i.e. produce no preferred-
frame effects. The reason is that a scalar field is invariant under boosts. On the other hand, theories
with auxiliary vector or tensor fields can cause preferred-frame effects, in addition to temporal and
spatial variations in local gravitational physics. For example, a timelike, long-range vector field
singles out a preferred universal rest frame, one in which the field has no spatial components; if
this field is generated by a cosmic distribution of matter, it is natural to assume that this special
frame is the mean rest frame of that matter. A number of such “vector-tensor” metric theories of
gravity have been devised [37, 38, 39]; see [23] for a review.

General relativity embodies SEP because it contains only one gravitational field gµν . Far
from a local gravitating system, this metric can always be transformed to the Minkowski form ηµν

(modulo tidal effects of distant matter and 1/r contributions from the far field of the local system),
a form that is constant and Lorentz invariant, and thus that does not lead to preferred-frame or
preferred-location effects.

The theoretical framework most convenient for discussing SEP effects is the parametrized
post-Newtonian (PPN) formalism [40, 41, 23], which treats the weak-field, slow-motion limit of
metric theories of gravity. This limit is appropriate for discussing the dynamics of the solar system
and for many stellar systems, except for those containing compact objects such as neutron stars. If
one focuses attention on theories of gravity whose field equations are derivable from an invariant
action principle (Lagrangian-based theories), the generic post-Newtonian limit is characterized by
the values of five PPN parameters, γ, β, ξ, α1 and α2. Two in particular, α1 and α2, measure the
existence of preferred-frame effects. If SEP is valid, α1 = α2 = ξ = 4β − γ − 3 = 0, as in general
relativity. In scalar-tensor theories, α1 = α2 = ξ = 0, but 4β − γ − 3 = 1/(2 + ω), where ω is
the “coupling parameter” of the scalar-tensor theory. In Rosen’s bimetric theory, α2 = c0/c1 − 1,
α1 = ξ = 4β − γ − 3 = 0, where c0 and c1 are the cosmologically induced values of the temporal
and spatial diagonal components of a flat background tensor field, evaluated in a cosmic rest frame
in which the physical metric has the Minkowski form far from the local system.

Within the PPN formalism the variations in the locally measured Newtonian gravitational
constant Glocal can be calculated explicitly: viewed as the coupling constant in the gravitational
force between two point masses at a given separation, it is given by

Glocal = 1 − (4β − γ − 3 − 3ξ)Uext −
1

2
(α1 − α2)V

2 − 1

2
α2(V · e)2 + ξUext(N · e)2 , (10)

where Uext is the potential of an external mass in the direction N, V is the velocity of the experiment
relative to the preferred frame, e is the orientation of the two masses and units have been chosen
so that Glocal = 1 in the preferred frame far from local matter sources. Thus Glocal can vary in
magnitude with variations in Uext and V 2, and can also be anisotropic, that is can vary with the
orientation of the two bodies. Other SEP-violating effects include planetary orbital perturbations
and precessions of planetary and solar spin axes. A variety of observations have placed the bounds

|α1| < 10−4 , |α2| < 4 × 10−7 . (11)

See [23, 42] for further details about tests of preferred-frame effects in gravity.

6 Tests of local Lorentz invariance at the centenary

6.1 Frameworks for Lorentz symmetry violations

During the past decade there has been a major renewal of interest in developing new ways to test
Lorentz symmetry, using laboratory experiments and astrophysical observations. Part of the moti-



94 C. M. Will Séminaire Poincaré

vation for this comes from quantum gravity. Quantum gravity asserts that there is a fundamental
length scale given by the Planck length, Lp = (h̄G/c3)1/2 = 1.6× 10−33 cm, but since length is not
an invariant quantity (Lorentz-FitzGerald contraction), then there could be a violation of Lorentz
invariance at some level in quantum gravity. In brane world scenarios, while physics may be locally
Lorentz invariant in the higher dimensional world, the confinement of the interactions of normal
physics to our four-dimensional “brane” could induce apparent Lorentz violating effects. And in
models such as string theory, the presence of additional scalar, vector and tensor long-range fields
that couple to matter of the standard model could induce effective violations of Lorentz symmetry,
as we discussed in Sec. 4.3. These and other ideas have motivated a serious reconsideration of how
to test Lorentz invariance with better precision and in new ways.

Kostalecky and collaborators developed a useful and elegant framework for discussing viola-
tions of Lorentz symmetry in the context of the standard model of particle physics [43, 44, 45].
Called the Standard Model Extension (SME), it takes the standard SU(3) × SU(2) × U(1) field
theory of particle physics, and modifies the terms in the action by inserting a variety of tenso-
rial quantities in the quark, lepton, Higgs, and gauge boson sectors that could explicitly violate
LLI. SME extends the earlier classical frameworks (THεµ, c2, χ− g) to quantum field theory and
particle physics. The modified terms split naturally into those that are odd under CPT (i.e. that
violate CPT) and terms that are even under CPT. The result is a rich and complex framework,
with many parameters to be analysed and tested by experiment. Such details are beyond the scope
of this paper; for a review of SME and other frameworks, the reader is referred to the recent article
by Mattingly [46].

Here we confine our attention to the electromagnetic sector, in order to link the SME with
the c2 framework discussed above. In the SME, the Lagrangian for a scalar particle φ with charge
e interacting with electrodynamics takes the form

L = [ηµν + (kφ)µν ](Dµφ)†Dνφ − m2φ†φ

−1

4
[ηµαηνβ + (kF )µναβ ]FµνFαβ , (12)

where Dµφ = ∂µφ + ieAµφ, and where (kφ)µν is a real symmetric trace-free tensor, and (kF )µναβ

is a tensor with the symmetries of the Riemann tensor, and with vanishing double trace. It has 19
independent components. There could also be a CPT-odd term in L of the form (kA)µεµναβAνF αβ ,
but because of a variety of pre-existing theoretical and experimental constraints, it is generally set
to zero.

The tensor (kF )µανβ can be decomposed into “electric”, “magnetic” and “odd-parity” com-
ponents, by defining

(κDE)jk = −2(kF )0j0k ,

(κHB)jk =
1

2
εjpqεkrs(kF )pqrs ,

(κDB)kj = −(kHE)jk = εjpq(kF )0kpq . (13)

In many applications it is useful to use the further decomposition

κ̃tr =
1

3
(κDE)jj ,

(κ̃e+)jk =
1

2
(κDE + κHB)jk ,

(κ̃e−)jk =
1

2
(κDE − κHB)jk − 1

3
δjk(κDE)ii ,

(κ̃o+)jk =
1

2
(κDB + κHE)jk ,

(κ̃o−)jk =
1

2
(κDB − κHE)jk . (14)

The first expression is a single number, the next three are symmetric trace-free matrices, and the
final is an antisymmetric matrix, accounting thereby for the 19 components of the original tensor
(kF )µανβ .
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In the rest frame of the universe, these tensors have some form that is established by the
global nature of the solutions of the overarching theory being used. In a frame that is moving
relative to the universe, the tensors will have components that depend on the velocity of the frame,
and on the orientation of the frame relative to that velocity.

In the case where the theory is rotationally symmetric in the preferred frame, the tensors
(kφ)µν and (kF )µναβ can be expressed in the form

(kφ)µν = κ̃φ(uµuν +
1

4
ηµν) ,

(kF )µναβ = κ̃tr(4u[µην][αuβ] − ηµ[αηβ]ν) , (15)

where [ ] around indices denote antisymmetrization, and where uµ is the four-velocity of an observer
at rest in the preferred frame. With this assumption, all the tensorial quantities in Eq. (14) vanish
in the preferred frame, and, after suitable rescalings of coordinates and fields, the action (12) can
be put into the form of the c2 framework, with

c =

(

1 − 3
4 κ̃φ

1 + 1
4 κ̃φ

)1/2 (

1 − κ̃tr

1 + κ̃tr

)1/2

. (16)

Another class of frameworks for considering Lorentz invariance violations is kinematical.
They involve modifying the relationship between energy E and momentum p for each particle
species. Assuming that rotational symmetry in the preferred frame is maintained, then one adopts
a parametrized dispersion relation of the form

E2 = m2 + p2 + EPlf
(1)|p| + f (2)p2 +

f (3)

EPl
|p|3 + . . . , (17)

where EPl is the Planck energy. Frameworks like these are useful for discussing effects that might
be relics of quantum gravity, and for discussing particle physics and high-energy astrophysics
experiments.

6.2 Modern searches for Lorentz symmetry violation

A variety of modern “clock isotropy” experiments have been carried out to bound the electromag-
netic parameters of the SME framework. For example, comparing the frequency of electromagnetic
cavity oscillators of various configurations with atomic clocks as a function of the orientation of
the laboratory has placed bounds on the coefficients of the tensors κ̃e− and κ̃o+ at the levels of
10−15 and 10−11, respectively [46]. Direct comparisons between atomic clocks based on different
nuclear species place bounds on SME parameters in the neutron and proton sectors, depending on
the nature of the transitions involved. The bounds achieved range from 10−27 to 10−32 GeV [46].

Astrophysical observations have also been used to bound Lorentz violations. For example, if
photons satisfy the Lorentz violating dispersion relation (17), then the speed of light vγ = ∂E/∂p
would be given by

vγ = 1 +
(n − 1)f

(n)
γ En−2

2En−2
Pl

. (18)

By bounding the difference in arrival time of high-energy photons from a burst source at large
distances, one could bound contributions to the dispersion for n > 2. The best limit, |f (3)| < 128
comes from observations of 1 and 2 TeV gamma rays from the blazar Markarian 421 [47].

Other testable effects of Lorentz invariance violation include threshold effects in particle reac-
tions, birefringence in photon propagation through empty space, gravitational Cerenkov radiation,
and neutrino oscillations. Mattingly [46] gives a thorough and up-to-date review of both the theo-
retical frameworks and the experimental results.
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7 Concluding remarks

At the centenary of special relativity, I can think of no better tribute to the impact and influence
of Einstein’s relativistic contributions than to cite how they now affect daily life. This unique
confluence of abstract theory, high precision technology and everyday applications involves the
Global Positioning System (GPS). This navigation system, based on a constellation of 24 satellites
carrying atomic clocks, uses precise time transfer to provide accurate absolute positioning anywhere
on Earth to 15 meters, differential or relative positioning to the level of centimeters, and time
transfer to a precision of 50 nanoseconds. It relies on clocks that are stable, run at the same or well
calibrated rates, and are synchronized. However, the difference in rate between GPS satellite clocks
and ground clocks caused by the special relativistic time dilation is around -7,000 ns per day, while
the difference caused by the gravitational redshift is around 46,000 ns per day. The net effect is
that the satellite clocks tick faster than ground clocks by around 39,000 ns per day. Consequently,
general relativity must be taken into account in order to achieve the 50 ns time transfer accuracy
required for 15 m navigation. In addition, the satellite clocks must be synchronized with respect
to a fictitious clock on the Earth’s rotation axis, in order to avoid the inevitable inconsistency
in synchronizing clocks around a closed path in a rotating frame (called the Sagnac effect). For
a detailed discussion of relativity in GPS, see [48]; for a popular essay on the subject, see [49].
GPS is a spectacular example of the unexpected and unintended benefits of basic research. While
Einstein often used trains to illustrate principles and consequences of relativity, one can now find
practical, everyday consequences of relativity in trains, planes and automobiles.

Acknowledgments

This work was supported in part by the National Science Foundation under Grant No. PHY 03-
53180.

References

[1] A. Einstein, Ann. d. Physik 17, 891 (1905).

[2] A. Einstein, Ann. d. Physik 17, 639 (1905).

[3] A. Einstein, Ann. d. Physik 49, 769 (1916).

[4] A. A. Michelson and E. W. Morley, Am. J. Sci. 134, 333 (1887).
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